

Strangeness production associated to a high- $p_{\rm T}$ particle in Pb-Pb collisions with ALICE

Xitzel Sánchez Castro

(Institut Pluridisciplinaire Hubert Curien, France)

Rencontre QGP France

17/09/14

- Motivation
- ALICE detector
- Strange particle reconstruction.
- h[±]-V0 correlations
 - Jet-like production
 - Bulk production
- Summary

 Λ/K_0^0 s in bulk and peak

Motivation

• Is the baryon/meson enhancement a consequence of bulk collectivity?

(radial flow or/and parton coalescence, ...?)

More about $\Lambda/K_{\rm S}$

-Low p_T

-Described by Hydrodynamical model calculation (up to 2 GeV/c) C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 84, 044903 (2011).

- Intermediate p_T

-Recombination model

Overestimates the Λ/K_0^0 s enhancement. R. Fries, V. Greco, P. Soresnen, Annu. Rev. Nucl. **58**, 177 (2008).

-EPOS

Interaction between jets and a hydrodynamical expansion of the system. Qualitatively ok, it reproduces the maximum. K. Werner, Phys. Rev. Lett. 109, 102301 (2012).

- High p_T

-Parton fragmentation regime Values are similar to the ones in proton-proton collisions

We want to understand the origin of the Λ/K^0_S enhancement by separating the hadrons produced in correlation with a high- p_T particle from the ones produced in the thermalized bulk.

Is the baryon/meson enhancement related to the collectivity effects in the plasma phase or is there also an effect due to

jet fragmentation modification in the medium?

ALICE

The strange hadrons (K^0_S , Λ , Ξ , Ω) are reconstructed using the kinematical and topological properties of their decays products.

$$K^{0}_{S}$$
 → $\pi^{+}\pi^{-}$ (B.R. 69.2%)
Λ → p π^{-} (B.R. 63.9%)

Single reconstruction technique allows for:

• Reconstruction of both strange mesons and baryons

• Wide transverse momentum range

Good control of systematic uncertainties

arXiv:1307.5530 [nucl-ex]

Hadron-V0 correlations

Trigger particle:

all charged particles within $5 < p_T < 10 \text{ GeV/}c$

Associated particle:

 K_{0}^{0} and Λ in the range $2 < p_{T} < 7 \text{ GeV}/c$

Detector acceptance is taken into account with the mixed-event correction.

Hadron-V0: bulk and jet

$$\frac{1}{N_{Trig}} \frac{d^2 N_{assoc}}{d\Delta \phi \Delta \eta} = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}$$

$$S(\Delta\phi, \Delta\eta) = \frac{1}{N_{Trig}} \frac{1}{\epsilon(p_T)} \frac{d^2N_{same}}{d\Delta\phi\Delta\eta}$$
$$B(\Delta\phi, \Delta\eta) = \alpha \frac{d^2N_{mixed}}{d\Delta\phi\Delta\eta}$$

$$B(\Delta\phi, \Delta\eta) = \alpha \frac{d^2 N_{mixed}}{d\Delta\phi\Delta\eta}$$

<u>Jet production</u>:

- 1) Projection in $\Delta \eta$
- 2) Projection in $\Delta \phi$

Bulk production:

We can test several samples according to the physics involved: ridge, away-side area.

Pb-Pb events at $\sqrt{s_{NN}} = 2.76$ TeV, 2011 run

0-5% centrality, 0 < $|Vtx_Z|$ < 2 cm Trigger particle: $5.0 < p_T^- < 10.0 \text{ GeV}/c$ K_S^0 candidates: $3.0 < p_T^- < 3.5 \text{ GeV}/c$ Signal + Background in $|Mass(\pi^+\pi^-)|$ - $Mass(K_S^0)$ | $< 3\sigma$

Summary

- It is possible to compare the Λ/K_0 s associated to the bulk and the Λ/K_0 s obtained with particles produced in association to a high-p_T particles.
- This study can help to understand better the origin of the baryon/meson enhancement.

Back Up

Hadronization mechanisms

Low pt

Parton coalescence

• The hadronization by coalescence requires that two (three) partons from the QGP are close in phase-space to form a meson (baryon). $n_q = 3$ (baryon)

Parton fragmentation

High pt

• At high values of p_T , partons are produced from initial hard processes.

More hadronization mechanisms

At intermediate pt:

A more advanced model of coalescence allows for the recombination between partons from jets with partons from the thermalized bulk.

[PRL 90, 202302 (2003), Phys.Rev. C73 (2006) 064904, Phys.Rev. C75 (2007) 054904]

Phys.Rev. C75 (2007) 054904