Strangeness production associated to a high-p_T particle in Pb-Pb collisions with ALICE

Xitzel Sánchez Castro
(Institut Pluridisciplinaire Hubert Curien, France)

Rencontre QGP France
17/09/14
Outline

- Motivation
- ALICE detector
- Strange particle reconstruction.
- h^\pm-V0 correlations
 - Jet-like production
 - Bulk production
- Summary

Λ/K_0^S in bulk and peak
Motivation

Is the baryon/meson enhancement a consequence of bulk collectivity? (radial flow or/and parton coalescence, ...?)

PRL 111, 222301 (2013)
More about Λ/K^0_S

- **Low p_T**

- **Intermediate p_T**
 - Recombination model
 Overestimates the Λ/K^0_S enhancement. R. Fries, V. Greco, P. Soresnen, Annu. Rev. Nucl. 58, 177 (2008).

- **EPOS**
 Interaction between jets and a hydrodynamical expansion of the system.

- **High p_T**
 - Parton fragmentation regime
 Values are similar to the ones in proton-proton collisions
We want to understand the origin of the Λ/K^0_S enhancement by separating the hadrons produced in correlation with a high-p_T particle from the ones produced in the thermalized bulk.

Is the baryon/meson enhancement related to the collectivity effects in the plasma phase or is there also an effect due to jet fragmentation modification in the medium?
ALICE

VZERO
- Trigger
- Centrality

ITS
- Vertexing
- Tracking

TPC
- Vertexing
- Tracking
Strangeness in ALICE

The strange hadrons (K^0_S, Λ, Ξ, Ω) are reconstructed using the kinematical and topological properties of their decays products.

$K^0_S \rightarrow \pi^+\pi^- \text{ (B.R. 69.2%)}$
$\Lambda \rightarrow p\pi^- \text{ (B.R. 63.9%)}$

Single reconstruction technique allows for:
- Reconstruction of both strange mesons and baryons
- Wide transverse momentum range
- Good control of systematic uncertainties

arXiv:1307.5530 [nucl-ex]
Hadron-V0 correlations

\[\Delta \phi = \phi_{\text{Trig}} - \phi_{\text{Assoc}} \]
\[\Delta \eta = \eta_{\text{Trig}} - \eta_{\text{Assoc}} \]

Trigger particle:
all charged particles within
5 < \(p_T \) < 10 GeV/c

Associated particle:
\(K^0_S \) and \(\Lambda \) in the range
2 < \(p_T \) < 7 GeV/c

Detector acceptance is taken into account with the mixed-event correction.
Hadron-V0: bulk and jet

\[
\frac{1}{N_{\text{Trig}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \phi d\eta} = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}
\]

\[
S(\Delta \phi, \Delta \eta) = \frac{1}{N_{\text{Trig}}} \frac{1}{\epsilon(p_T)} \frac{d^2 N_{\text{same}}}{d\Delta \phi d\eta}
\]

\[
B(\Delta \phi, \Delta \eta) = \alpha \frac{d^2 N_{\text{mixed}}}{d\Delta \phi d\eta}
\]

Jet production:
1) Projection in \(\Delta \eta \)
2) Projection in \(\Delta \phi \)

Bulk production:
We can test several samples according to the physics involved: ridge, away-side area.
Summary

- It is possible to compare the Λ/K^0_S associated to the bulk and the Λ/K^0_S obtained with particles produced in association to a high-p_T particles.

- This study can help to understand better the origin of the baryon/meson enhancement.
Back Up
Hadronization mechanisms

- **Parton coalescence**
 - The hadronization by coalescence requires that two (three) partons from the QGP are close in phase-space to form a meson (baryon).

- **Parton fragmentation**
 - At high values of p_T, partons are produced from initial hard processes.
More hadronization mechanisms

At intermediate p_T:

A more advanced model of coalescence allows for the recombination between partons from jets with partons from the thermalized bulk.

Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV