A Large Ion Collider Experiment

Upgrade of the ALICE Inner Tracking System

ALICE | Rencontres QGP-France 2014 | 15-18/9/2014 | Levente Molnar (CNRS IPHC) for the ALICE Collaboration

OUTLINE

- ALICE Upgrade strategy and the ITS project
- Detector and physics performance à la TDR
- Pixel chip technology
- ITS Upgrade activities at Strasbourg

- ALICE Upgrade strategy and the ITS project
- Detector and physics performance à la TDR
- Pixel chip technology
- ITS Upgrade activities at Strasbourg

ALICE

ALICE UPGRADE STRATEGY

Physics program requires 10 nb⁻¹ of integrated luminosity of Pb-Pb collisions wrt. the approved program of 1 nb⁻¹

Physics signals of interest are rare, mostly not triggerable

- Low p_T (below 1 GeV/c), high combinatorial background
- Increase rate capabilities for minimum bias heavy-ion collisions to 50 kHz – 100 kHz

ALICE runs at high luminosity

- Factor 100 increase in statistics (for untriggered probes)
- Requires smaller beam pipe, <u>new detectors</u>: <u>ITS</u>, <u>MFT</u>, upgraded TPC read-out chambers and readout electronics upgrade for other detectors
- New combined online-offline framework: O²

Preserve ALICE uniqueness

– Low p_T measurements and particle identification

Upgrade in the 2nd LHC Long Shutdown (LS2) 2018/19

Full list and details of upgrade strategy: ALICE LoI, CERN-LHCC-2012-012

MOTIVATION FOR A NEW INNER TRACKING SYSTEM

- move closer to IP (position of first layer): 39 mm \rightarrow 22 mm
- reduce material budget X/X_0 / layer: from ~1.14% ...
 - ... to 0.3% (inner layers) and to 0.8% (outer layers)
- reduce pixel size: 50 μ m × 425 μ m \rightarrow O(30 μ m × 30 μ m)
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - increase granularity: 6 layers \rightarrow 7 layers
- Fast readout (now limited at 1 kHz with full ITS):
 - Pb-Pb: up to 100 kHz
 - pp: several 100 kHz
- Fast insertion/removal
 - possibility to access for yearly maintenance

The new ALICE ITS will fully replace the present ITS !

- Project approved by LHCC in Sept. 2012
- Technical Design Report approved by LHCC in Dec 2013
- Budget approved by CERN Upgrade Cost Group / Research Board in March 2014
- Decision on pixel chip architecture: Q2 / 2015 (tbc)
- Enter production phase in 2016 ٠
- Installation commissioning 2018/2019 ٠

French Institutes (CNRS-IN2P3) in the project: IPHC+Univ. (Strasbourg), LPSC+Univ. (Grenoble) Upgrade of the

Inner Tracking System

CERN-LHCC-2013-024; ALICE-TDR-017

TDR

J.Phys. G41 (2014) 087002

- ALICE Upgrade strategy and the ITS project
- Detector and physics performance à la TDR
- Pixel chip technology
- ITS Upgrade activities at Strasbourg

8

Present and upgraded ITS performance

- Standalone tracking efficiency ~ 70 % at p = 100 MeV/c
- Improvement in momentum resolution for standalone tracking

SUMMARY OF ITS UPGRADE PHYSICS REACH (TDR)

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical
	(GeV/c)	uncertainty	(GeV/c)	uncertainty
Heavy Flavour				
D meson R_{AA}	1	10%	0	0.3%
$D_s meson R_{AA}$	4	15%	< 2	3%
D meson from B R_{AA}	3	30%	2	1%
${ m J}/\psi$ from B $R_{ m AA}$	1.5	15% (p_T-int.)	1	5%
B^+ yield	not accessible		3	10%
$\Lambda_{ m c} R_{ m AA}$	not accessible		2	15%
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not accessible		2	15%
$\Lambda_{\rm b}$ yield	not accessible		7	20%
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
$D_{\rm s} {\rm meson} v_2 (v_2 = 0.2)$	not accessible		< 2	8 %
D from B $v_2 (v_2 = 0.05)$	not accessible		2	8 %
J/ψ from B $v_2 \ (v_2 = 0.05)$	not accessible		1	60%
$\Lambda_{\rm c} v_2 \ (v_2 = 0.15)$	not a	accessible	3	20%
	Dielectro	ns		
Temperature (intermediate mass)	not accessible			10%
Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%
Low-mass spectral function [4]	not a	accessible	0.3	20%
	Hypernuc	elei		
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%

Pb–Pb collisions for an integrated luminosity of 10 nb⁻¹

Improving precision

Access to new observables

ALICE, CERN-LHCC-2013-024

PHYSICS PERFORMANCE, PARTICLE PRODUCTION

Newly accessible heavy baryons/mesons in Pb-Pb

Pb-Pb, 5.5 TeV, Minimum-bias and 0–10 % central collisions, 10 nb⁻¹

12

14

p_{_} (GeV/c)

10

16

PHYSICS PERFORMANCE, ENERGY LOSS

Significant reduction of uncertainties, new heavy baryons/mesons in Pb-Pb collisions

Pb-Pb, 5.5 TeV, 0–10 % central collisions, 10 nb⁻¹

PHYSICS PERFORMANCE, HADRONIZATION, FLOW

ALICE | Rencontres QGP-France 2014 | 15-18/9/2014 | Levente Molnar (CNRS IPHC) 12

PHYSICS PERFORMANCE, DI-LEPTONS Excess after background subtraction

Estimation of the temperature at various phases of system expansion with 10-20% precision (stat.+syst.)

- ALICE Upgrade strategy and the ITS project
- Detector and physics performance à la TDR
- Pixel chip technology
- ITS Upgrade activities at Strasbourg

LAYOUT OF THE UPGRADED ITS

- 7 layers layout:
 - 3 layers of Inner Barrel
 - 4 layers of Outer Barrel
- Radial coverage: 22 mm to 400 mm
- η coverage: |η| ≤ 1.22, for tracks from 90 % most luminous region

- ~ 12.5 Gigapixels, binary readout
- ~ 10 m² of silicon

 Expected radiation level (innermost layer, including a safety factor 10): 700 krad (TID) and 1 × 10¹³ 1 MeV n_{eq} (NIEL)

PIXEL TECHNOLOGY

- Requirements:
 - very thin sensors
 - very high granularity
 - cover large area
 - withstand modest radiation level
- Choice:
 - monolithic silicon pixel sensors using TowerJazz 0.18 µm CMOS Imaging Process
 - high-resistivity (1-6 kΩcm) epitaxial layer on p-type substrate
 - deep p-well to shield PMOS: true CMOS circuitry in the pixel

ALICE, CERN-LHCC-2013-024

Nwell diode output signal: V ~ Q/C

- minimize charge spread over different pixels
- minimize capacitance
- small diode surface (~ 100x smaller than pixel area) and large depletion volume
- Moderate bias voltage on the substrate can increase depletion zone around the Nwell charge collection diode

PIXEL CHIP VERSION UNDER DEVELOPEMENT

ALICE, CERN-LHCC-2013-024

- Three pixel chip architectures under development: MISTRAL / ASTRAL and ALPIDE
- Decision on the ALICE Pixel Chip architecture for the ITS Upgrade: Q2 / 2015 (tbc)

Specifications:

- Chip size: 15 mm x 30 mm
- Pixel pitch: ~ 30 µm
- Si thickness: 50 µm
- Spatial resolution: ~ 5 µm
- Power density: < 100 mW/cm²
- Integration time: < 30 µs

- ALICE Upgrade strategy and the ITS project
- Detector and physics performance à la TDR
- Pixel chip technology
- ITS Upgrade activities at Strasbourg

ITS UPGRADE ACTIVITIES IN STRASBOURG

- Pixel chip R&D (PICSEL group)
 - Pixel chip development and test: MISTRAL/ASTRAL
- Outer Barrel module production (ALICE + Micro-techniques groups)
 - Preparation for assembly
- **ITS Upgrade software** (ALICE group)
 - Framework coordination
 - Standalone reconstruction framework
 - Pixel chip response simulation
- Physics performance analysis (ALICE group)
- Editorial work: ITS Upgrade TDR (ALICE + PICSEL groups)

MIMOSA34

IPHC: MISTRAL / ASTRAL DEVELOPMENT

Several small scale prototypes have been realized and characterized ...

MIMOSA-34 MIMOSA-32FEE MIMOSA-22THRA MIMOSA-22THRB * sensing node & pixel dimensions * in-pixel circuitry & end-of-col. discri. * double-row read-out

... fulfilling the ALICE ITS specifications (SNR, radiation hardness, ...)

.. and leading to the FSSBs (Full Scale Building Block = 1/3 of a full chip)

- FSBBs received in late Q2/2014
 - Currently characterized in lab:
 - Fabrication yield
 - Uniformity of chips
- Test beam at CERN SPS: Oct 2014

CDS: correlated

PIXEL CHIP R&D ASTRAL / MISTRAL – MIMOSA-34

- Analogue, no in-pixel pre-amplification and CDS circuitry
 - double sampling sensing node optimisation: pixel size, epitaxial layer characteristics
- Pixel size varies from 22 × 27 μm^2 to 22 × 66 μm^2
- High detection efficiency even for large 22 × 66 μ m² pixels
 - \rightarrow Favourable pixel option for Outer Barrel

IPHC: OUTER BARREL MODULE ASSEMBLY

The ITS project identified the following module assembly sites: CERN, LBNL, STFC, CCNU, INFN, IPHC, Korea, Netherlands, Thailand

IPHC is committed to assemble 200-250 out of 1250 modules of the OB

Start of module assembly: 2016, 1 module built and tested / day

Outer Barrel Stave

IPHC: MODULE ASSEMBLY PREPARATION

2014/06

- Adapt the ALICE module assembly procedure to the local infrastructure
- Improvements: automatic placement and alignment of chips, (interfaced) automatic vacuum control

Planned activities for 2014/Q4 - 2015/Q2

- Tools manufacturing at IPHC
- Preparation of positioning and vacuum control protocols
- Dummy module assembly: placement, gluing, soldering / laser soldering training

Planned activities for 2015/Q3 - 2016

- Training on common automatic assembly machine and its procurement
- Start of production in 2016 ...

ZEVAC IP500 (precision ~ 5 μm)

SUMMARY

- The new ALICE ITS with 7 layers of monolithic silicon pixel detectors will be installed during LS2 of the LHC in 2018/19 completely replacing the present ITS
- Full-scale chip prototypes are currently being characterized leading to a decision on the ALICE Pixel Chip architecture for the ITS Upgrade around 2015 / Q2
- ITS Upgrade activities at IPHC: chip R&D, simulation + reconstruction software, physics performance analysis are extended with the preparation for module assembly