Muons from Open Heavy-flavour Decays in p-Pb **Collisions at** $\sqrt{s_{NN}}$ =5.02 TeV with ALICE

Shuang Li for the ALICE Collaboration

Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France Institute of Particle Physics, CCNU, Wuhan, China Key Laboratory of Quark & Lepton Physics, MoE, China

Rencontres QGP-France-14 Etretat 15-18 septembre 2014

- **Motivation**
- Heavy-flavour decay muons with ALICE
- Heavy-flavour decay muons in p-Pb collisions
 - Production cross section
 - Visit Nuclear modification factor
 - ✓ Forward-to-backward ratio
- Conclusion

- Heavy quarks (charm and beauty) produced in initial hard scatterings and _1.6 ط experience the full evolution of the medium
- Suppression observed in central Pb-Pb collisions: cold + hot nuclear matter effect
- 0.6 **Cold nuclear matter effects in p-Pb collisions** 0.4 0.2 ✓ nuclear modification of PDFs 2 \Box shadowing / gluon saturation at low Bjorken-x AT.T_DEP_35199 H. Fujii and K. Watanabe, Nucl. Phys. A915 (2013) 1 \checkmark parton energy loss I. Vitev, Phys. Rev. C75 (2007) 064906 ✓ multiple collisions A.M. Glenn et al., Phys. Lett. B 644 (2007) 119
- Investigation by means of the nuclear modification factor and the forward-to-backward ratio

$$R_{\rm pPb} = \frac{1}{A} \frac{d\sigma_{\rm pA}/dp_{\rm T}}{d\sigma_{\rm pp}/dp_{\rm T}} \qquad \qquad R_{\rm FB} = \frac{d\sigma/dp_{\rm T} \text{ (Forward)}}{d\sigma/dp_{\rm T} \text{ (Backward)}}$$

1.2

0.8

Heavy-flavour decay muons at forward rapidity in ALICE

- D, B, $\Lambda_c \rightarrow \mu + X$
- Muon spectrometer
 - ✓ acceptance and geometrical cuts
 - matching between tracking and \checkmark trigger chambers
 - ✓ correlation between momentum and distance of closest approach (DCA) to remove further background

- units in the p direction
- direction, 2.03<*y*_{cms}<3.53)

Rapidity shift of the center-of-mass of 0.465

Background (mainly from π^{\pm} and K[±] decays) estimated at forward rapidity (p-going

Heavy-flavour decay muons at backward rapidity in ALICE

- D, B, $\Lambda_c \rightarrow \mu + X$
- Muon spectrometer
 - ✓ acceptance and geometrical cuts
 - matching between tracking and \checkmark trigger chambers
 - ✓ correlation between momentum and distance of closest approach (DCA) to remove further background

- units in the p direction
- direction, -4.46 $< y_{cms} < -2.96$)

Rapidity shift of the center-of-mass of 0.465

Background (mainly from π^{\pm} and K[±] decays) estimated at backward rapidity (Pb-going

- p-Pb collisions at 5.02 TeV collected in 2013
 - ✓ forward (p-going side): muon single low (MSL) & muon single high (MSH)
 - ✓ backward (Pb-going side): MSL & MSH

		<i>p</i> _⊤ threshold at 50% efficienty (GeV/ <i>c</i>)	statistics	integrated luminosity (µb ⁻¹)
forward	MSL	~0.5	1.5x10 ⁷	196
	MSH	~4.2	1x10 ⁷	4.9x10 ³
backward	MSL	~0.5	2.6x10 ⁷	254
	MSH	~4.2	1.5x10 ⁷	5.8x10 ³

• $\sigma_{MB} = 2.09 \text{ b} (2.12 \text{ b}) \text{ at forward (backward) rapidity}$

$$\frac{d\sigma}{dp_T} = \frac{1}{\frac{F_{norm}N_{evt}}{F_{orm}N_{evt}}} \cdot \frac{dN}{dp_T} \cdot \sigma_{MB}$$

- Two methods implemented to obtain the number of equivalent Minimum-Bias (MB) events from the Muon Single Low (MSL) and Muon Single High (MSH) triggers
 - offline method based on AOD \checkmark
 - scaler method based on OCDB \checkmark

F _{norm} (0-100%)	forward rapidity	b
MSL	28.2±0.3%(stat.) ±0.5%(syst.)	20.5±0
MSH	1032.8±0.7%(stat.) ±1.1%(syst.)	798.3±0

[https://indico.cern.ch/event/287038]

[https://indico.cern.ch/event/240961]

backward rapidity

.2%(stat.) $\pm 0.3\%$ (syst.)

0.6%(stat.) $\pm 0.4\%$ (syst.)

Analysis strategy: efficiency correction

- Realistic simulations using beauty signals as inputs (negligible difference between efficiencies of charm and beauty decay muons)
- Uncertainty on misalignment: 1% x p_T (p_T in GeV/c)

Analysis strategy : background subtraction (1/2)

Forward rapidity (2.5< y_{CMS} <3.54)

- input: K/ π spectra in p-Pb collisions measured at mid-rapidity $(|y_{CMS}| < 0.3, p_T^{K/\pi} < 15 \text{ GeV}/c)$ with ALICE
 - \square extrapolate K/ π spectra to higher $p_T (p_T^{\pi} < 24 \text{ GeV}/c, p_T^{\pi} < 40 \text{ GeV}/c)$ in order to have the decay muons in $p_T^{\mu} < 16 \text{ GeV}/c$
- extrapolate K/ π spectra in p-Pb collisions to forward rapidity by means of Monte-Carlo simulations according to

$$\frac{dN_{pPb}^{K/\pi}}{dp_T dy}(p_T, y) = \frac{dN_{pPb}^{K/\pi}}{dp_T dy}(p_T, |y_{CMS}| < 0.3) \times F_{ex}$$

the rapidity extrapolation factor ($F_{extra.}$) is estimated via the ratio of forward to mid-rapidity $(|y_{CMS}| < 0.3)$ yields from DPMJET simulations use HIJING to estimate the systematic uncertainty

produce the K/ π decay muon background by means of fast simulations of decay kinematics \checkmark and absorber effect

- $c_{tra}(p_T, y)$

Analysis strategy : background subtraction (2/2)

- Backward rapidity (-4< y_{CMS} <-2.96) scale K/ π spectra to backward rapidity according to CMS measurements
 - ✓ lower limit of decay muons: $Y_{asym} = 1$
 - ✓ upper limit: 2 x the asymmetry measured by CMS (maximum of the upper limit is ~ 2.6)

$$F_{mean} = \frac{a+b}{2} \qquad \sigma_{mean}^2 = \frac{(a-b)^2}{12}$$

(where, a and b are the lower and upper limit, respectively; mean value with systematic uncertainty by assuming a uniform distribution.)

ALICE

Analysis strategy: pp reference

obtained by a pQCD-based energy scaling of the p_{T} -differential cross sections measured at $\sqrt{s} = 7$ TeV and extrapolated to higher p_T by using pQCD calculations when no measurement is available arXiv:1107.3243 [hep-ph]

 $p_{\rm T}$ -differential production cross sections measured for heavy-flavour decay muons at forward and backward rapidities in $2 < p_T < 16 \text{ GeV}/c$

- R_{pPb} at forward rapidity: consistent with unity within uncertainties over the whole measured p_{T} range
- R_{pPb} at backward rapidity: slightly larger than unity in $2 < p_T < 4$ GeV/c and close to unity at higher p_T
- Within uncertainties, data can be described by perturbative QCD calculations with EPS09 parameterization of shadowing

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

- $-3.48 < y_{\rm CMS} < -2.96$
- Within uncertainties, similar results in sub-rapidity bins for R_{pPb} at both forward and backward rapidity

 $3.02 < y_{\rm CMS} < 3.54$

- R_{PbPb} : suppression by a factor of 3-4 in $4 < p_T < 10$ GeV/c in the 10% most central collisions
- R_{pPb} : consistent with unity for $p_T > 4$ GeV/c at both forward and backward rapidity
- Suppression observed in central Pb-Pb collisions is a hot and dense medium effect

Pb-Pb: ALICE Collaboration, Phys. Rev. Lett. 109, 112301 (2012)

p-Pb forward rapidity

p-Pb backward rapidity -Pb-Pb central

- Within uncertainties, R_{pPb} of electrons from heavy-flavour decays
 - \checkmark consistent with unity
 - ✓ data can be described by the perturbative QCD calculations
 - \checkmark consistent with the ones of muons from heavy-flavour decays in the overlap p_{T} region
- $p_{\rm T}$ correlation between heavy-flavour meson and electron (at mid-rapidity) is similar with the one between heavy-flavour meson and muon (at forward rapdity)

Comparison with PHENIX at backward rapidity

- Results of PHENIX and ALICE are based on different energy and acceptance => compared with the predictions from same model
- Model predictions performed at backward rapidity
 - perturbative QCD calculations including both initial-state and final-state interactions \checkmark
 - incoherent multiple scattering effect can enhance the heavy meson cross section in the \checkmark intermediate p_{T} region => enhancement behavior found in the semi-leptonic decay channel
- Within uncertainties, data can be well described => consistent between PHENIX and ALICE

17

1409.2494 [hep-ph]

ICE

Heavy-flavour decay muons: p_{T} -differential R_{FB}

Forward-to-backward ratio

- R_{FB} : systematically smaller than unity in 2< p_T <4 GeV/*c* and close to unity at higher p_T
- Within uncertainties, data can be described by perturbative QCD calculations with EPS09 parameterization of shadowing

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

Conclusion

- Cold nuclear matter effects on heavy-flavour decay muons assessed at forward and backward rapidity via the nuclear modification factor R_{pPb} and forward-to-backward ratio R_{FB}
- $R_{\rm pPb}$
 - \checkmark forward (=p-going) rapidity: compatible with unity in the measured p_{T} range
 - \checkmark backward (=Pb-going) rapidity: compatible with unity for $p_{T} > 4$ GeV/c, slightly larger than unity in $2 < p_T < 4 \text{ GeV/c}$

$R_{\rm FB}$

- ✓ systematically smaller than unity in $2 < p_T < 4$ GeV/*c* and close to unity at higher p_T
- Models implementing cold nuclear matter effects describe the data within uncertainties
- Suppression observed in central Pb-Pb collisions at forward rapidity is due to hot and dense medium effect
- Paper proposal done, writing of first draft ongoing

Analysis ongoing: measurements vs. event activity

Backup

20

Where are we?

Andreas Morsch, CERN LHC Seminar 12/11/2013

Decay kinematics

e ← HF

$\mu \leftarrow HF$

Results of D-meson

- D-meson R_{pPb} can be described by Color Glass Condensate (CGC) calculations, perturbative QCD calculations with EPS09 nuclear PDF and a model including energy loss in cold nuclear matter, nuclear shadowing and k_{T} -broadening
- R_{AA} : suppression by a factor of 4-5 at $p_T \sim 10 \text{ GeV}/c$ in the 20% most central collisions
- Suppression observed in central Pb-Pb collisions is a hot medium effect

Heavy-flavour hadron decay muons: systematic uncertainty on R_{pPb}

		-
Systematics	p-Pb (forward rapidity)	p-l
T _{pA}	3.6% (fo	or 0-1
Normalization to Min. Bias		1%
Background subtraction	32% maximum (<i>p</i> _<12 GeV/ <i>c</i>)	
Trigger efficiency	1% (5%) for Low (F	High)
Tracking efficiency	2%	
Matching efficiency	0	.5%
Misalignment	1%	б х <i>р</i> т
pp reference	< 15% (30%) maximum < 3% for rapid	in <i>p</i> ⊤∙ lity ex
Additional uncertainty on signal (no background in p_T >12 GeV/c)	3%	

 K^{\pm}/π^{\pm} decay muon background and pp reference are the dominant sources of systematic uncertainties

00%)

40% maximum $(p_{\rm T} < 12 \, {\rm GeV}/c)$

$p_{\rm T}$ Muon Events

3%

<12 GeV/*c* (*p*_T>12 GeV/*c*); trapolation

6%

Reference between D-meson and HFM (1/3)

 $(0 < p_{\rm T} < 25 \; GeV/c)$

$(p_{\rm T} < 16 \, {\rm GeV/c})$

$(16 < p_T < 25 \text{ GeV/c})$

Reference between D-meson and HFM (2/3)

parameter K indicates the deviation of data w.r.t the FONLL prediction if there is no energy dependence, i.e. $K(E) \sim \text{const.}$, the two strategies would be similar \checkmark

measurement pp@ 7 TeV

$(0 < pT < 12 \ GeV/c)$

$(12 < p_T < 16 \text{ GeV/c})$

- parameter K
 - 1.24 and 1.23 using D-meson and HFM strategy, respectively;

same results expected between the two strategies in $2 < p_T < 12$ GeV/c

similar results found between the two strategies in $12 < p_T < 16$ GeV/c: controlled by the parameter K

Black: using D-meson strategy in $2 < p_T < 16$ GeV/c

Red: using HFM strategy in 2<*p*_T<12 GeV/c

Light blue: using HFM strategy in 12<*p*_T<16 GeV/c

Cross section within overlap acceptance

PHENIX results

Phys. Rev. Lett. 112, 252301

