Measurement of W-boson production in p-Pb collisions at $\int s_{NN} = 5.02$ TeV with ALICE

Jianhui Zhu for the ALICE Collaboration

QGP-France, September 15 - 17, 2014, Étretat, France

Subatech, CNRS/IN2P3, Nantes, France École des Mines de Nantes, Nantes, France Institute of Particle Physics, CCNU, Wuhan, China

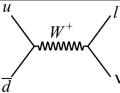
Outline

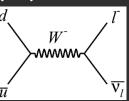
- Physics motivation
- ALICE layout and data sample
- Analysis strategy :
 - measure muons from W decays at forward (p-side) and backward (Pb-side) rapidities
 - W signal extraction
 - Acc. x Eff. Correction
 - normalization
- Results :
 - cross-section vs. rapidity
 - □ Yield/<N_{coll}> vs. multiplicity

Conclusion

Physics motivation

> Why ?


Electroweak (EW) bosons are produced in initial hard partonic scattering processes

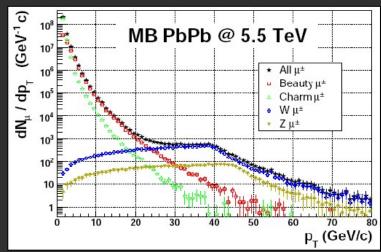

□ In p-p collisions :

- / W boson production mechanism (e.g. via q- \bar{q} annihilation) makes it sensitive to parton distribution functions (PDFs)
- □ In p-Pb collisions :
 - investigate the cold nuclear matter effects
 - modification of PDFs in nuclei
- □ In Pb-Pb collisions :
 - produced before QGP is formed
 - colorless probes which are supposed not to interact with QGP
- Luminosity and detector alignment cross-checks

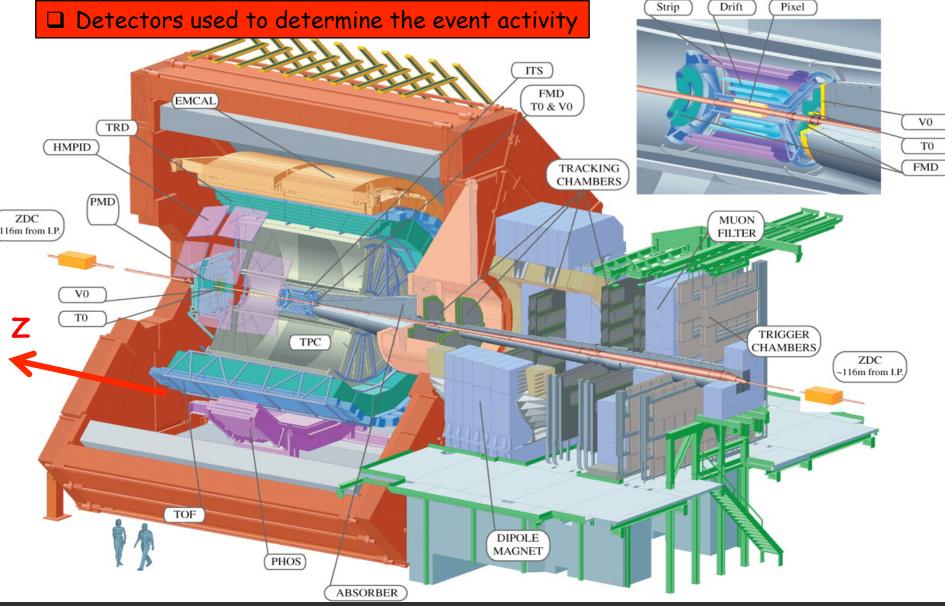
How ?

Dominant production processes (LO)

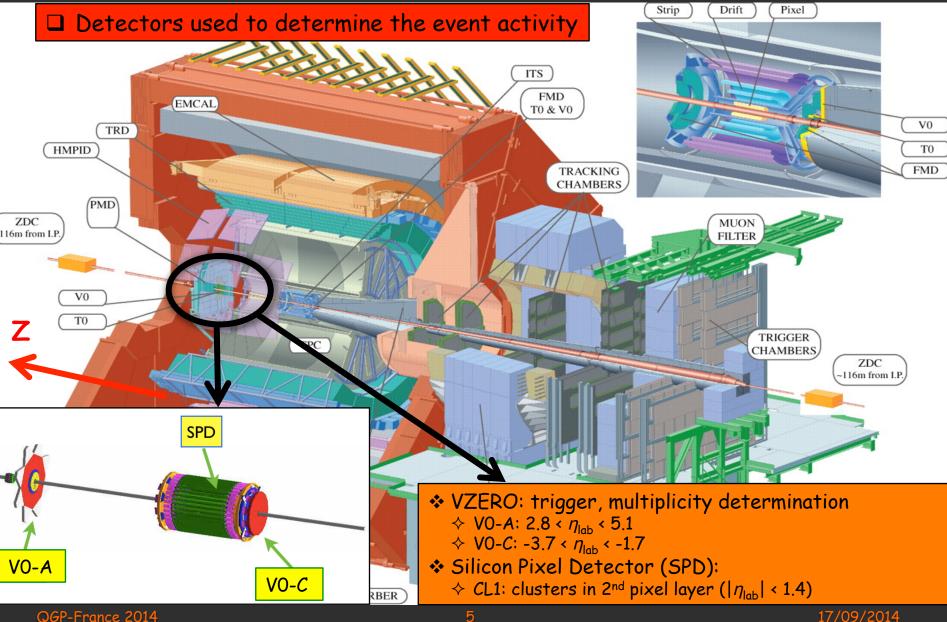
- Detected through their muonic decay : $W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$
- □ µ[±] ← W[±] production is maximum at ~ 40 GeV/c and dominates the high p_T range


[Z. Conesa del Valle et al., ALICE-INT-2006-021 & Eur. Phys. J. C49 (2007) 149]

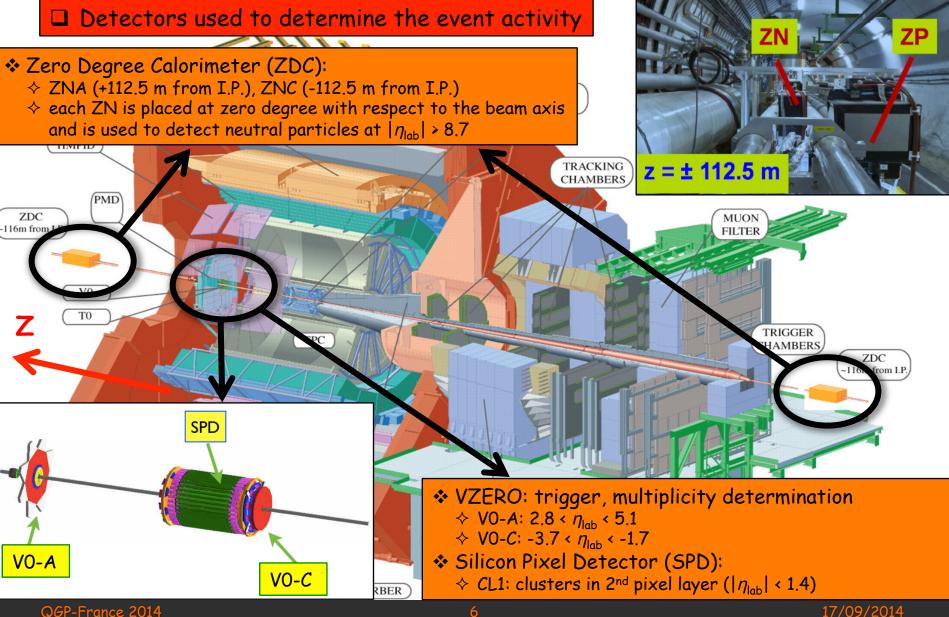
✤ Where ?


In the ALICE Muon Spectrometer, covering a rapidity range complementary to those of ATLAS and CMS

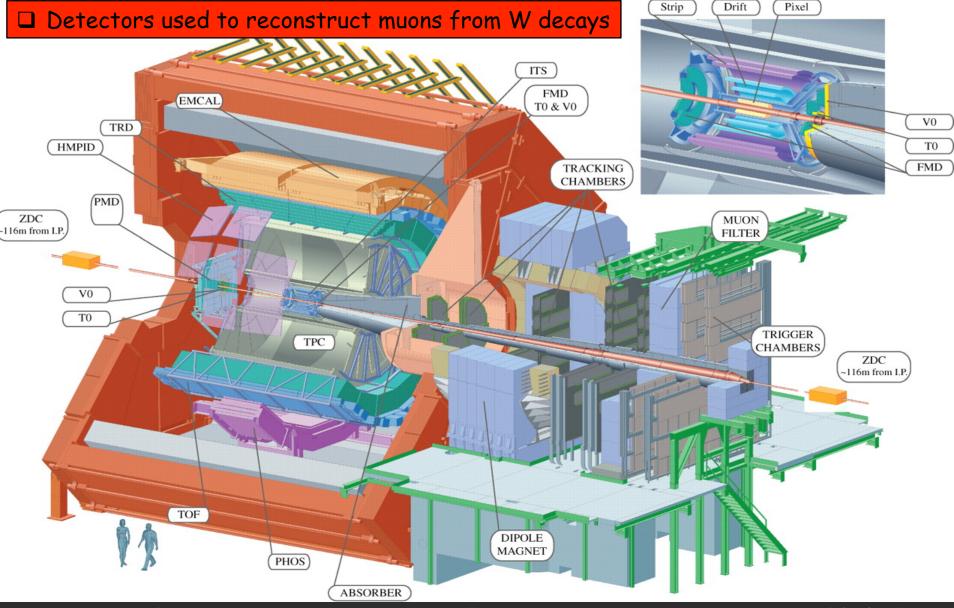
QGP-France 2014


statistics: 1 month (L = 5.10²⁶ cm⁻² s⁻¹, t = 10⁶ s)

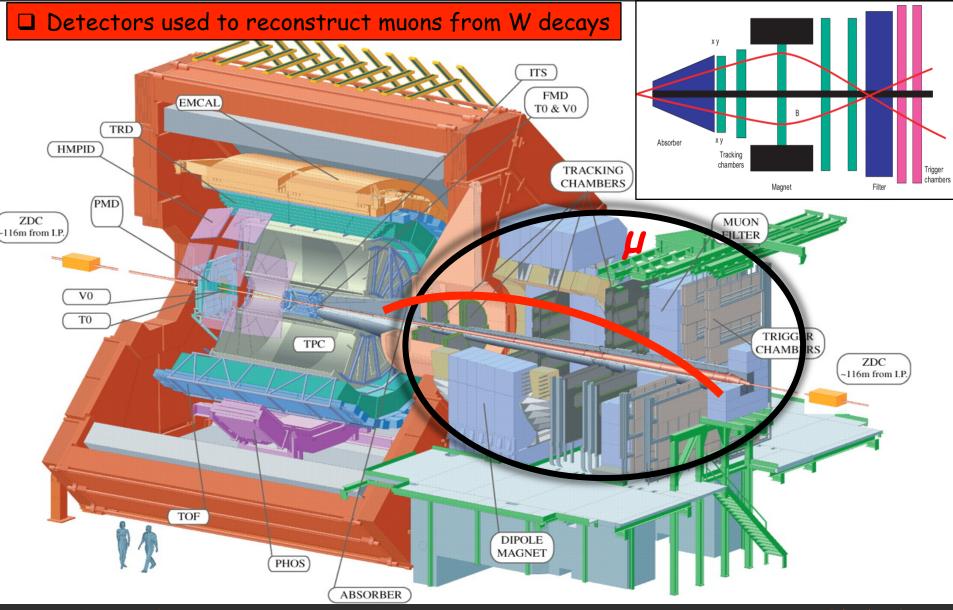
ALICE detector layout (I)



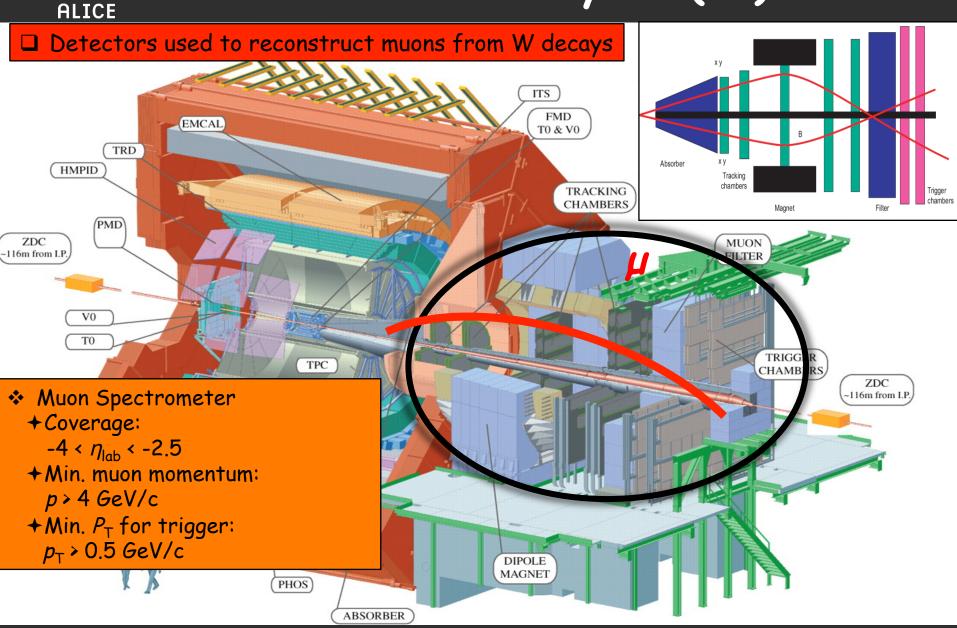
ALICE detector layout (I)


QGP-France 2014

ALICE detector layout (I)



QGP-France 2014


ALICE detector layout (II)

ALICE detector layout (II)

ALICE detector layout (II)

Data sample

Pb collisions :

□ Forward rapidity (p-going direction, 2.03 < y_{CMS} < 3.53) □ Backward rapidity (Pb-going direction, -4.46 < y_{CMS} < -2.96)

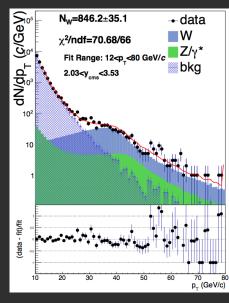
17/09/2014

- Center of mass energy: 5.02 TeV
- Trigger: Muon high p_T triggered events = MB events (coincidence of VOA & VOC) with a muon of $p_T \sim 4.2$ GeV/c in the spectrometer
- Statistics:

	Integrated luminosity		
forward	4.9 x 10 ³ ub ⁻¹		
backward	5.8 × 10 ³ ub ⁻¹		

Muon track selection :

- acceptance and geometrical cuts
- \square muon trigger matching (with high p_T): reject punch-through hadrons
- pxDCA cut : correlation between momentum and distance of closest approach (DCA) which is to the interaction vertex to remove beam-gas tracks and fake tracks


Analysis strategy

- \diamond W[±] is the main contributor in single muon momentum distribution at high p_{T} (p_{T} > 30 GeV/c)
- ♦ Heavy-flavor decay muons are the dominant background at low p_T (8 < p_T < 40 GeV/c)</p>
- For $p_T > 50$ GeV/c, Z⁰/Y^{*} is the main source of background
- * Extract W[±] signal from a fit of the transverse momentum distribution of single muons with

$$f(p_T) = N_{bkg} \cdot f_{bkg}(p_T) + N_{\mu \leftarrow W} \cdot f_{\mu \leftarrow W}(p_T) + N_{\mu \leftarrow Z/\gamma^*} \cdot f_{\mu \leftarrow Z/\gamma^*}(p_T)$$

- f_{bkg}(p_T): phenomenological functions or FONLL-based MC template
- f_{µ∈W}(p_T), f_{µ∈Z/Y*}(p_T): Monte-Carlo templates (POWHEG)
- N_{bkg}, N_{µ€W}: free parameters
- $N_{\mu \in \mathbb{Z}/\gamma^*}$: fixed to $N_{\mu \in W}$
- Correct the extracted signal by Acceptance × Efficiency (Acc. × Eff)
- Compare results with theory

W^{\pm} and Z^0/Y^* MC templates

Simulation configuration :

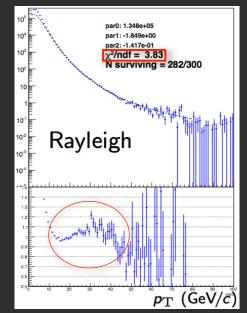
- \square W[±] and Z⁰/Y^{*} generated with POWHEG in p-p & p-n collisions at 5.02 TeV
- $\hfill\square$ W^{\pm} and Z^0/Υ^{\star} forced to decay into muonic channels
- Generators :
 - **POWHEG** :
 - [JHEP 0807(2008)060]
 - is interfaced with PYTHIA6.4 to apply showering, CTEQ6m PDF and no shadowing

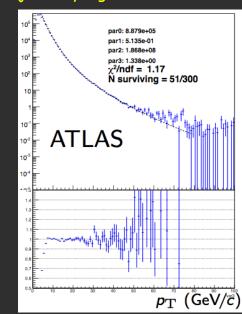
PYTHIA6.4 : (is used only for systematics, including effects of shadowing) [JHEP 05(2006)026]

- shadowing : p or n considered in a Pb nucleus, parameterized with EPSO9
- PDF set : CTEQ61

Combine p-p & p-n to obtain p-Pb :

□ A = 208, Z = 82

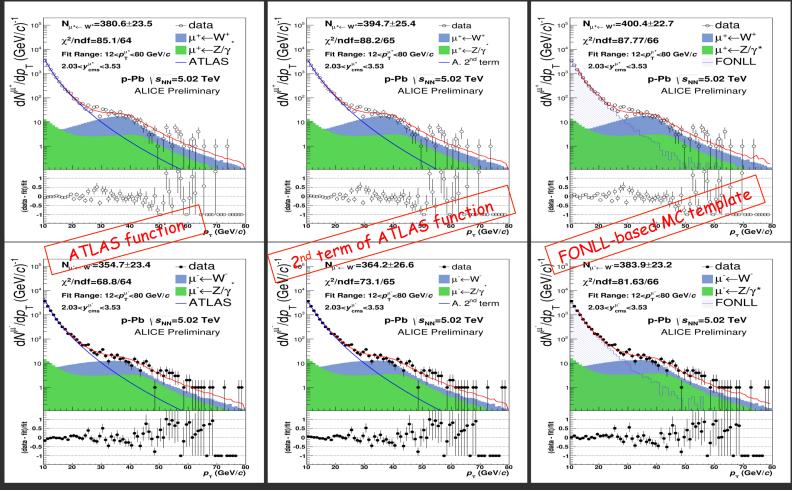

$$\frac{1}{N_{pPb}} \cdot \frac{dN_{pPb}}{dp_T} = \frac{Z}{A} \cdot \frac{1}{N_{pp}} \cdot \frac{dN_{pp}}{dp_T} + \frac{A - Z}{A} \cdot \frac{1}{N_{pn}} \cdot \frac{dN_{pn}}{dp_T}$$


HF background: phenomenological functions

- The background mainly consists of muons from heavy-flavor (b+c) deacys
- Small shadowing effects expected at high p_T : use FONLL p_T shapes in the generation of D and B mesons
- Phenomenological functions used by CMS, ATLAS and LHCb collaboration for similar measurements at the LHC

Rayleigh:
$$f(p_T) = C \cdot p_T \cdot \exp\left(-\frac{p_T^2}{2(A+B \cdot p_T)^2}\right)$$
[Phys. Lett. B 715 (2012) 66]ATLAS: $f(p_T) = A \cdot e^{-B \cdot p_T} + C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^{2.5}}$ [ATLAS-CONF-2011-078]ATLAS 2nd term: $f(p_T) = C \cdot \frac{e^{D \cdot \sqrt{p_T}}}{p_T^E}$

Test on FONLL-based MC template: reject Rayleigh

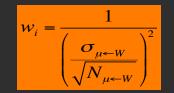

QGP-France 2014

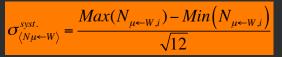
Example of W signal extraction (forward)

- The yield of $\mu^{\pm} \leftarrow W^{\pm}$ is defined as the integral W template for p_{T} > 10 GeV/c
- ♦ Fit range : 12 < p_T < 80 GeV/c</p>

Example of fit in forward rapidity:

ALI-PREL-81302


Slight dependence of the W yield on the background description in the fit
QGP-France 2014
14


Systematic on signal extraction

- Signal extraction : several fits performed on the muon p_T distribution (trials) by varying the fit configuration
 - □ heavy-flavor background description \rightarrow change fit functions and p_{T} range of fit
 - □ fraction of muons from Z^0/Y^* decays → use difference between POWHEG and PYTHIA
 - alignment effects vary the detector positions in simulations within uncertainties on alignment
- To take into account the systematic uncertainty of signal extraction, a weighted average over the trials is performed
 - The results of (3 background descriptions) x (1 MC templates for signal, POWHEG) x (different p_T ranges) x (2 values of N_{µ€Z/Y*}/N_{µ€W}) x (2 residual alignment files) are merged together to obtain the final value
- The statistical error is given in the standard way by propagating the error on each trial :

Assuming that the results from different trials come from a uniform distribution, one can finally estimate the systematic uncertainty as :

Shadowing effects : use PYTHIA (with EPS09) for W templates

QGP-France 2014

Acceptance × Efficiency: alignment effects

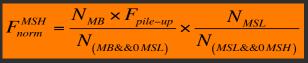
- In order to get the real yield of W, the results should be corrected by Acc. x Eff.
- * Acc. x Eff. is determined from the same simulations used to obtain the $\mu^{\pm} \leftarrow W^{\pm}$ templates

	forv	vard	backward		
	µ⁺	µ⁻	µ⁺	µ⁻	
Acc. × Eff.	0.888	0.887	0.775	0.760	

Alignment effect :

Systematics due to imperfect knowledge of the detector positions estimated by varying the alignment in the simulations and found to be < 1%</p>

Tracking/trigger efficiency :


- Systematic uncertainties for muon tracks :
 - Tracking: 2% Trigger: 1% (detector efficiency only at high p_{T}) Matching: 0.5%
- Propagation to the number of muons from W decays :
 - assume above uncertainties are uncorrelated versus p_T
 - assume full correlation
 - → the quadratic sum of the errors in the right table : 2.3%
- A conservative error of 2.5% is considered for all multiplicity bins

Multiplicity	$\sigma_{ ext{track/trigger}}$		
0-100%	2.65%		
0-20%	-		
20-40%	1.43%		
40-60%	-		
60-80%	1.77%		

Normalization

- MSL: muon single low p_T trigger (p_T >~ 0.5 GeV/c), MSH: muon single high p_T trigger (p_T >~ 4.2 GeV/c)
- MSH events must be normalized to equivalent minimum bias to obtain the cross-section
- Normalization factors estimated with two methods :
 - Offline method which uses trigger inputs :

where $F_{pile-up} = \mu/(1-e^{-\mu})$ and μ is the mean value of Poisson distribution which describes the probability to have N collisions

□ Trigger scalers which use Level 0 (LOb) trigger counters :

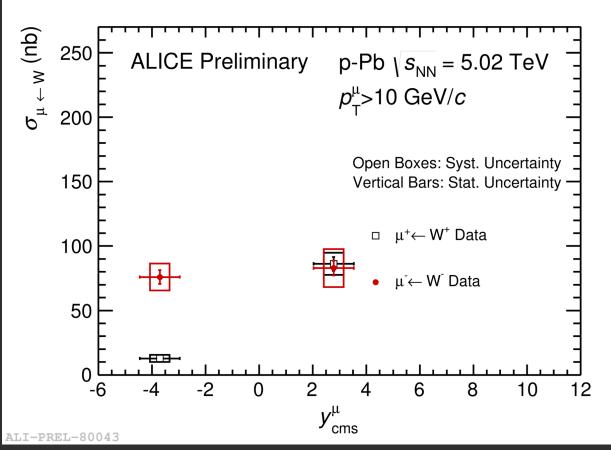
$$F_{norm}^{MSH} = \frac{L0b_{MB} \times purity_{MB} \times F_{pile-up}}{L0b_{MSH} \times PS_{MSH}}$$

 $\mathsf{PS}_{\mathsf{MSH}}$ fraction of accepted high p_{T} triggered events which pass the physics selection

- The difference of the methods is used as systematic uncertainty (1%)
- MB cross sections :
 - p-Pb (forward, 2.03 < y_{CMS} < 3.53) : 2.09 ± 0.07 b</p>
 - **D** p-Pb (backward, -4.46 < γ_{CMS} < -2.96) : 2.12 ± 0.06 b

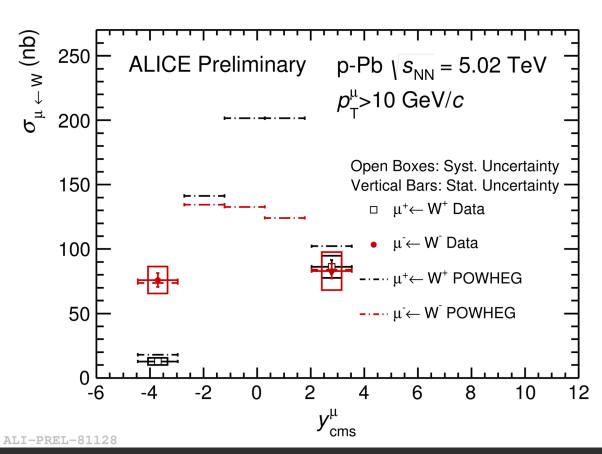
$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{Acc. \times Eff.} \times \frac{\sigma_{MB}}{N_{MSH} \times F_{norm}}$$

Summary of systematic uncertainties

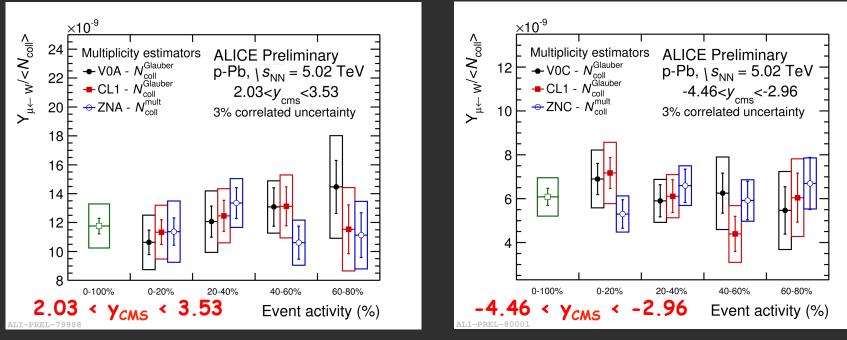

- Systematic on the generator is based on : the NLO generator POWHEG and PYTHIA6.4 which is used to take into account systematics on nPDFs
- Other possible sources :
 - ✓ input PDFs
 - ✓ The ratio of Z^0/Υ^*
 - ✓ All of above are < 1%</p>
- The summary of systematics considered is shown below :

Signal extraction (includes alignment, fit stability/shape, etc.)	from ~ 6% to ~ 24%
Acc.xEff. - track./trig. Efficiencies - alignment	2.5% 1%
Normalization to MB - F _{norm} - σ _{MB} Pile-up	1% 3.2% (LHC13de) 3% (LHC13f) from 0 to 7.5%
Normalization to <n<sub>coll></n<sub>	from 8% to 21% depending on bin

Results: cross-section vs. rapidity


Cross section of muons from W decays with 2.03 < y_{CMS} < 3.53 (forward) and -4.46 < y_{CMS} < -2.96 (backward), p_T^μ > 10 GeV/c in p-Pb collisions

Results: cross-section vs. rapidity


- Cross section of muons from W decays with 2.03 < y_{CMS} < 3.53 (forward) and -4.46 < y_{CMS} < -2.96 (backward), p_T^μ > 10 GeV/c in p-Pb collisions
- * Measurement is consistent with POWHEG cross-section within 1.5σ
- POWHEG here does not include nuclear PDF effects

Results: yields vs. multiplicity normalized with $\langle N_{coll} \rangle$

- ♦ In order to increase statistics, $\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$ were added
- Yields of muons from W decays normalized to <N_{coll}> as a function of multiplicity for CL1, VOA and ZNA (VOC and ZNC)
- Average number of collisions were estimated :
 - for VOA, VOC and CL1 : Glauber Model fits to multiplicity distribution
 - for ZNA and ZNC : scaling <N_{part}> in MB collisions by the ratio between the average multiplicity density measured at mid-rapidity given ZN energy event class and the one measured in MB collisions

Behavior of different multiplicity estimators compatible within uncertainties

Conclusion

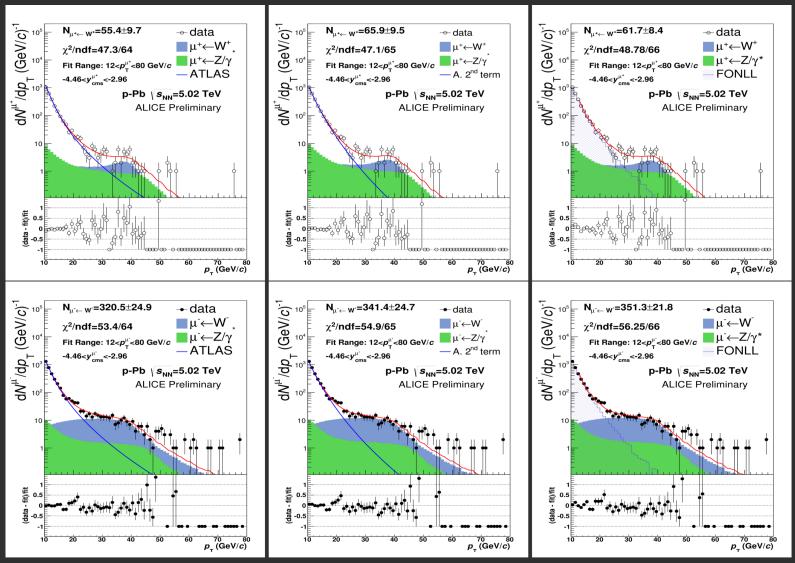
★ The production of muons from W decays was measured in p-Pb collisions at $\int s_{NN} = 5.02$ TeV with 2.03 < y_{CMS}^{μ} < 3.53 and -4.46 < y_{CMS}^{μ} < -2.96, p_{T}^{μ} > 10 GeV/c

- Results:
 - Cross section of muons with $p_{T^{\mu}}$ > 10 GeV/c as a function of y_{CMS}
 - Yields/<N_{coll}> using different multiplicity estimators to determine <N_{coll}> : yield in different event activity bins found to scale with N_{coll} within (large) uncertainties

* Cross section is compared with POWHEG: agreement within 1 (1.5) sigma for μ^- (μ^+)



Backup



Example of combined fit (backward)

2nd term of ATLAS function

FONLL-based MC template

ALI-PREL-81306 QGP-France 2014

	VOA		CL1		VO <i>C</i>		Hybrid ZNA	
Multiplicity	<n<sub>coll></n<sub>	syst.	<n<sub>coll></n<sub>	syst.	<n<sub>coll></n<sub>	syst.	<n<sub>coll></n<sub>	syst.
0-20%	12.8	11%	13.4	11%	12.85	11%	11.5	9.3%
20-40%	9.36	10%	9.51	10%	9.39	10%	9.57	8.1%
40-60%	6.42	9%	6.29	9%	6.40	9%	7.01	9.9%
60-80%	3.81	21%	3.52	21%	3.74	21%	4.33	12.7%
0-100%	<n<sub>coll> : 6.8835 syst. : 8%</n<sub>							

- In order to increase the statistics, the results for $\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$ are summed together
- * The systematic uncertainties on signal extraction are considered as uncorrelated and summed in quadrature
- The uncertainties on the normalization factor and tracking & trigger uncertainties and efficiency are fully correlated among μ^+ and μ^- and also among the different multiplicity bins
- The uncertainties on Acc.xEff. are uncorrelated for µ⁺ and µ⁻, but correlated with multiplicity
- The uncertainties on pile-up and <N_{coll}> are correlated among µ⁺ and µ⁻, but uncorrelated in multiplicity

QGP-France 2014