Prompt J/ψ in the CMS Experiment

Émilien Chapon

Laboratoire Leprince-Ringuet, École Polytechnique, Palaiseau

Rencontres QGP France Sept. 15-18, 2014

Muons in CMS

- Excellent muon momentum resolution
 - Combination of muon detectors and inner silicon tracking (1-2% momentum resolution up to p_T 100 GeV)
- J/ψ acceptance
 - In PbPb: mid-y ($p_T > 6.5 \,\text{GeV}$) and forward Y ($p_T > 3 \,\text{GeV}$)
 - In pp and pPb: goes down to $p_T = 0$ GeV at forward rapidity with softer muon ID

Prompt vs non-prompt J/ψ

- Long B lifetime ($c au \sim 500\,\mu{
 m m}$)
- $B \rightarrow J/\psi$ characterized by displaced muon tracks in the silicon tracker.
- Base on the *b*-hadron pseudo-proper decay length $\ell_{J/\psi}$:

$$\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$$

Kinematics

CMS-HIN-12-014

• Simultaneous fit of the dimuon mass $m_{\mu\mu}$ and the pseudo-proper decay length $\ell_{J/\psi}$.

Prompt J/ψ in PbPb: nuclear modification factor

- $p_T > 3 \,\mathrm{GeV}/c$ $(p_T > 6.5 \,\mathrm{GeV}/c$ for $|\eta| < 1.6).$
- No dependence on rapidity.
- Slightly more suppression at high p_T .
- $\bullet\,$ Factor up to ~ 5 suppression in most central events.

v_2 definition

 Asymmetric particle production w.r.t. the event plane because of pressure gradients.

$$rac{1}{N}rac{dN}{d\phi}\sim 1+2 imes v_2\cos(2(\phi-\psi))+\dots$$

- Connected with the dynamics of the hot medium.
- J/ψ : correlation with regeneration.

Theory / RHIC / prediction

- Charm quarks flow as can be seen from the v₂. Strong indication of some form of thermalized charm
 - If there is (re)generation of J/ψ they should inherit this flow as well
 - In contrast to primordial J/ψ that survived the QGP phase, J/ψ v₂ should discriminate between (re)generated J/ψ and primordial J/ψ

CMS-HIN-12-001

Significant non-zero v_2

 $v_2(p_T > 6.5 \,\text{GeV}/c, \, |y| < 2.4, \, 10 - 60\%) = 0.054 \pm 0.013 \pm 0.006 \, (3.8\sigma)$

• No strong dependence on centrality, p_T or rapidity.

Comparison with ALICE

CMS-HIN-12-001

- Confirm non-zero J/ψ v₂.
- Extend to high p_T region (6.5 < p_T < 30 GeV/c).
- No significant dependence on p_T in CMS data.

Comparison to charged hadrons and D mesons

CMS-HIN-12-001

- low p_T : $v_2(\text{light quark}) \approx v_2(\text{open } c) > v_2(\text{closed } c)$
- high p_T : $v_2(\text{light quark}) \approx v_2(\text{open } c) \approx v_2(\text{closed } c)$
 - pure path-length dependence?

Excited states suppression in PbPb

Observed stronger suppression of excited states than ground state in bottomnia measurement. What about charmonia ?

Previous $\psi(2S)$ results

CMS-HIN-12-007

- Double ratio of inclusive $\psi(2S)$ to J/ψ
- Stronger suppression of $\psi(2S)$ than J/ψ in mid-rapidity and high p_T (as predicted from sequential melting)
- Hint of ψ(2S) enhancement relative to J/ψ in central PbPb at low p_T and forward rapidity, however, severely limited by large pp uncertainty

More pp data

CMS-HIN-12-007

- Thanks to pp run in 2013: \sim 20 times larger data sample
- Reject non-prompt contribution by cut on pseudo-decay length
 - Non-prompt contamination \sim 5%: included in systematic uncertainties

$\psi(2S)$ mass shape at high p_T

CMS-HIN-12-007

High p_T (mid-rapidity)

 $\psi(2S)$ in PbPb is smaller than in pp with respect to the J/ψ .

$\psi(2S)$ mass shape at low p_T

CMS-HIN-12-007

Low p_T (forward rapidity)

 $\psi(2S)$ in PbPb is higher than in pp with respect to the J/ψ .

Double ratio of prompt $\psi(2S)$

- Difference in ψ(2S) production for both central and peripheral PbPb between high p_T (mid-y) and low p_T (forward y)
- high p_T (mid-y): $\psi(2S)$ more suppressed than J/ψ in PbPb
- low p_T (forward y): $\psi(2S)$ less suppressed than J/ψ in PbPb

Offline muon reconstruction software developments

- Prompt reconstruction: inner track + hits in the muon chambers
- Regional Iterative algorithm: inner track + (pp iterative tracking in region around muon hits) + hits in the muon chambers
- \sim 40% increase in dimuon efficiency for prompt J/ψ
- Some improvement still possible for muons with high impact parameter

Offline muon reconstruction software developments

- Working on increasing the reconstruction efficiency for displaced muons
- Also lowering the p_T threshold for J/ψ detection

Offline muon reconstruction software developments

- Working on increasing the reconstruction efficiency for displaced muons
- Also lowering the p_T threshold for J/ψ detection

Prompt $J/\psi v_2$

Significant v₂: v₂($p_T > 6.5 \text{ GeV}/c$, |y| < 2.4, 10 - 60%) = 0.054 ± 0.013 ± 0.006 (3.8 σ)

Double ratio of $\psi(2S)$

Clear difference mid-rapidity (high p_T) and forward rapidity (low p_T)

- Mid-rapidity (high p_T) : suppressed as predicted from sequential melting
- Forward rapidity (low p_T) : opposite trend to the mid-rapidity (high p_T) results and also opposite to expectation from sequential melting or regeneration

Reconstruction developments

Enhancing the performance for the next run

