

J/ ψ PRODUCTION VS MULTIPLICITY IN p-Pb and pp COLLISIONS WITH ALICE AT THE LHC

Javier Martin Blanco

QGP-France 2014, Etretat 16/09/2014

- Motivation
- Analysis
 - Multiplicity study
 - Signal extraction and < p_T >
- Results
 - Relative yields vs charged particle multiplicity
 - Relative <p_T> vs charged particle multiplicity
- Outlook

MOTIVATION

The objective of this analysis is to study the correlation of the J/ Ψ yield and its $\langle p_T \rangle$ with the number of charged particles produced in the collision.

We will compare the results obtained in p-Pb, Pb-p (5.02 TeV) and p-p (8 TeV) to try to get some insight on the particle production mechanism as in^{*}:

*Multiplicity dependence of the average transverse momentum in pp, p-Pb and Pb-Pb collisions at the LHC

MOTIVATION

Comparison with previous results:

THE ALICE DETECTOR

DATA SELECTION

Event selection

- Dimuon trigger = Minimum Bias (MB) trigger (Coincidence of the two VZERO (2.8 < η^{lab} <
- 5.1 and -3.7 < η^{lab} < -1.7)) & two opposite sign muon tracks in the trigger chambers
- Rejection of beam-gas and electromagnetic interactions
- SPD used for vertex determination and charged particle multiplicity measurement
 - SPD vertex Quality Assurance (QA):
 - ✓ Z_v^{SPD} resolution < 0.25 cm
 - ✓ | Primary Z_v^{SPD} Primary $Z_v^{TPC+ITS}$ | < 0.5 cm
 - ✓ Number of contributors $n_{contr} > 0$
- $|Z_{vertex}| < 10$ cm (due to SPD acceptance for multiplicity estimation)

• Dimuon analysis cuts

- Muon trigger matching
- -4 < η_{μ}^{lab} < -2.5
- 17.6 cm < R_{abs} < 89.5 cm (R_{abs} is the track radial position at the end of the absorber)
- 2.5 < $y_{\mu\mu}^{lab}$ < 4

MULTIPLICITY DETERMINATION

We have two different methods to estimate the **charged particle multiplicity** from the **number of tracklets measured in the SPD**:

- SPD AccxEff correction of the number of tracklets :
 - * Allows to correlate J/ Ψ with the absolute multiplicity $dN_{ch}/d\eta$
 - * Restricted to $|\eta_{\text{tracklets}}| < 0.5$ to be within the acceptance of the detector.

 \ast Need MC simulations to get the SPD AccxEff and to deal with the N_{ch} inelastic efficiency corrections.

- "Mean corrected" number of tracklets. Data-driven correction :
 - *Allows to correlate J/ Ψ only with the relative multiplicity $dN_{ch}/d\eta/<dN_{ch}/d\eta>$
 - * We can go to $|\eta_{\text{tracklets}}| < 1$, direct to compare with previous publications
 - * Need also MC simulations

SPD AccxEff CORRECTION

generated charged particles / detected tracklets

SPD correction in QASPD&PSALL_ANY

۲

$|\eta| < 2.0 \& |Z_v| < 18.0$ in run 195644 (LHC13c) MB

dN_{ch}/dη comparison

Our estimation is correct => we can rely on our $dN_{ch}/d\eta$ computation

Need a specific MC production for each period. Tests have been made (see backup) but still resolving some issues

"MEAN CORRECTION"

Note: for this method we use also $|\eta_{\text{tracklets}}| < 0.5$

- $<N_{tr}(z_0)>$ is a reference value, the maximum value of the $<N_{tr}>$ vs Z_v^{SPD} distribution
- $<N_{tr}(z)>$ is the $<N_{tr}>$ for the Z_v^{SPD} of the event
- $N_{tr}(z)$ is the number of tracklets of the event

$$N_{tr}^{corr}(z) = N_{tr}(z) \frac{\langle N_{tr}(z_0) \rangle}{\langle N_{tr}(z) \rangle}$$

The correction is the same for each Z_v^{SPD} . We need to introduce the natural fluctuations to the correction:

CORRECTION TO <Ntr>

From simulations we know that

$$N_{ch} \propto N^{corr}_{tr}$$

$$\frac{N_{tr}^{corr}}{\langle N_{tr}^{corr} \rangle} = \frac{dN_{ch}/d\eta}{\langle dN_{ch}/d\eta \rangle}$$

We need to have into account the mean number of tracklets of events w/o reconstructed SPD vertex (0) and the mean number of tracklets of events not seen by the MB trigger condition:

$$< N_{tracklets}^{corr} > = \epsilon_{MB} \left((1 - \epsilon_{\overline{SPDQA}}) \cdot < N_{tracklets}^{corr} >_{measured} + \epsilon_{\overline{SPDQA}} \cdot < N_{tracklets}^{corr} >_{\overline{SPDQA}} \right) + \\ (1 - \epsilon_{MB}) \cdot < N_{tracklets}^{corr} >_{\overline{MB}} \\ \epsilon_{MB} \checkmark \sim 0.96 \text{ for pA} \\ \epsilon_{MB} \checkmark \sim 0.74 \text{ for pp } @ 7 \text{TeV}$$

Since we don't know yet the mean number of tracklets for events not seen by the MB we take this as a source of systematic uncertainty by taking the two extreme situations:

$$< N_{tracklets}^{corr} >_{\overline{MB}} \longrightarrow 0 - < N_{tracklets}^{corr} >_{MB}$$

J/ψ SIGNAL EXTRACTION

Need the Muon Spectrometer's AccxEff corrected J/ Ψ and Ψ signals to fit the $< p_T >$ distributions :

To get the M_{inv} spectra we weight each dimuon pair with $J/\Psi I/Acc \times Eff(p_T,y)$

- Fitting functions for signal : Crystal ball extended (CBE) and NA60 *Tails parameters : Fixed from the J/ Ψ AccxEff corrected MC
- Fitting function for background : VWG, POL2xEXP.
- **Fitting range :** 2 5 , 2.2- 4.7 GeV/c²

J/ψ SIGNAL EXTRACTION

Integrated cross section in agreement with the publications

J/ψ SIGNAL EXTRACTION: SOME SYSTEMATICS

Does Muon Spectrometer J/ Ψ AccxEff change with multiplicity ?

J/ Ψ simulations with extreme p_T and y distributions have been performed. Input nominal distributions are modified to reproduce $\langle p_T \rangle$ in the low and high multiplicity bins in pp

Very small changes in 2D AccxEff correction (just on the rapidity bin -3.6 to -4, the difference $\sim 2\%$ is because is a big bin.)

Negligible changes expected in 2D AccxEff corrected results

J/ψ SIGNAL EXTRACTION: SOME SYSTEMATICS

The 2D AccxEff correction barely changes with the input MC distributions, nevertheless, differences up to 6.5% were found in the integrated AccxEff

Same integrated AccxEff in multiplicity bins	Mult(N _{tr} corr)	Nj/ ∉ raw	N _{J/Ψ} 2D corr spec.	NJ/Y raw/Accxeff	rel. dif
AccxEff _{nominal} = 12.44%	0-4	5278+-92	43921+-893	42428+-740	3.4 %
	30-60	666+-42	4894+-364	5354+-338	-9.4%
Different integrated					

Different integrated AccxEff in multiplicity bins	Mult(N _{tr} corr)	$N_{J/\Psi}$ raw	N _{J/Ψ} 2D corr spec.	$N_{J/\Psi}$ raw/Accxeff	rel. dif
AccxEff _{soft pT} = 11.80%	0-4	5278+-92	43921+-893	44728+-780	-1.8%
$AccxEff_{hard pT} = 13.25\%$	30-60	666+-42	4894+-364	5026+-317	-2.7%

The changes in the integrated AccxEff with the p_T and y distributions (multiplicity) explains the difference between the N_{J/Y} extracted with the two methods

$J/\psi < p_T > EXTRACTION$

To compute the dimuon $\langle p_T \rangle$ vs M_{inv} , we weight each dimuon pair with $J/\Psi I/Acc \times Eff(p_T, y)$

$$< p_T >^{\mu^+\mu^-} (M_{\mu^+\mu^-}) = \alpha^{J/\psi} (M_{\mu^+\mu^-}) \times < p_T >^{J/\psi} + \alpha^{\psi'} (M_{\mu^+\mu^-}) \times < p_T >^{\psi'} + (1 - \alpha^{J/\psi} (M_{\mu^+\mu^-}) - \alpha^{\psi'} (M_{\mu^+\mu^-})) \times < p_T >^{bkg}$$

 $\begin{array}{c} < p_T >^{J/\psi} \rightarrow constant \\ \hline < p_T >^{\psi} \rightarrow constant \\ \hline < p_T >^{bkg} = pol2 \end{array}$

System	$\langle p_T \rangle$ (this analysis)	$\langle p_T \rangle$ (other analysis)
pp	2.61 ± 0.01 (stat.)	$2.60 \pm 0.08 \pm 0.06$ *
p-Pb	2.78 ± 0.01 (stat.)	$2.77 \pm 0.01 \pm 0.03$ **
Pb-p	2.47 ± 0.01 (stat.)	$2.47 \pm 0.01 \pm 0.03$ **

** ALICE: "Multiplicity dependence of Jpsi production in p-Pb collisions at 5.02 TeV"

The advantage of this method respect to the usual one is that we divide the event sample just in multiplicity bins. This allows to reach **higher multiplicities with a thinner binning.**

$J/\psi < p_T > EXTRACTION: SOME SYSTEMATICS$

Variations of the J/ Ψ < p_T > with M_{inv} have been found in the J/ Ψ simulation

(detector effects), while we consider it as constant in the fits.

RESULTS

Comparison of the results for pp at 8TeV (V0 runs) and pp at 7 TeV (Phys.Lett. B712 (2012) 165-175)

RESULTS

• Strong increase of relative J/ ψ yields at forward and backward rapidity with relative multiplicity

• At backward rapidity similar behavior as found in pp collisions at 7 TeV, deviation at forward rapidity

RESULTS

• The relative J/ ψ < p_T > increases with the mid-rapidity relative event multiplicity and then saturates beyond $dN_{ch}/d\eta/<dN_{ch}/d\eta> \sim 1.5$ in p-Pb

OUTLOOK

• Presented two methods to estimate the event multiplicity. For now we use the data-driven method for the p-Pb preliminaries.

- Finalizing the analysis of the preliminaries and working on the SPD AccxEff method.
- Signal extraction and $\langle p_T \rangle$ with 2D J/ ψ AccxEff gives similar results that the standard method but have additional advantages.
- Relative yields in p-Pb at forward and backward rapidity show a strong increase with charged particle multiplicity. Similar behavior as in pp at 7 TeV.
- Relative J/ $\psi < p_T >$ increases at low multiplicity and saturates in p-Pb.

THANK YOU FOR YOUR ATTENTION

ALICE | QGP-France | 16/09/2014 | Javier Martin

ALICE | QGP-France | 16/09/2014 | Javier Martin

CHECKS SPD CORRECTION

Background estimation

In the simulation the tracklets with different labels in the 2 SPD layers (they do not come from the same MC particle) are considered as combinatorial background.

0.05 3 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 -20 -30 -10 20 30 10 **ZVertex**

% of Bkg tracklets vs ZVertex vs Eta

۲

Always < 3% in our window of interest

CHECKS SPD CORRECTION

Comparison of $\langle dN_{ch}/d\eta \rangle$ in $|\eta| < 0.5 | Z_v| < 10 vs V0A$ multiplicity with **Phys.Lett. B728 (2014) 25-38***

Event Class	V0A multiplicity	<dnch deta=""> p-Pb*</dnch>	<dnch deta=""> (LHC13d&e) p-Pb</dnch>	<dnch deta=""> (1 run LHC13c) p-Pb</dnch>
0-5%	> 227	45+-1	45.0	45.1
5-10%	187-227	36.2+-0.8	36.3	36.1
10-20%	142-187	30.5+-0.7	30.6	30.3
20-40%	89-142	23.2+-0.5	23.4	23.2
40-60%	52-89	16.1+-0.4	16.2	16.0
60-80%	22-52	9.8+-0.2	9.9	9.8
80-100%	<22	4.4+-0.1	4.5	4.4

Our estimation is correct => we can rely on our $dN_{ch}/d\eta$ computation

SIGNAL EXTRACTION SYSTEMATICS

We compute relative quantities so the uncertainties are estimated from the variations of:

$$\frac{N_{J/\psi}^{bin_i}}{N_{J/\psi}^{tot}} \quad \text{and} \quad \frac{< p_T >^{bin_i}}{< p_T >^{int}}$$

Since the signal shape does not change with multiplicity, we make the tests with the same signal for the integrated and bin, varying the bkg parametrization, fitting range and $\Psi(2S) \sigma$

Relative $N_{J/\Psi}$:

- 2 signal shapes: CB and NA60
- 2 bkg parametrizations: VWG and Pol2Exp
- 2 fitting ranges: 2-5, 2.2-4.7
- 3 σ_{Ψ(2S)}: 1.1, 1.0, 0.9 x σ_{J/Ψ}

Relative <p_T>:

- \bullet All the variations of M_{inv} fits from the Relative $N_{J/\Psi}$ tests
- 2 bkg parametrizations: Pol2 and Pol2Exp
- 2 fitting ranges: 2-5, 2.2-4.7

96 fits per bin 4608 tests per bin

Propagation of M_{inv} fit statistical unc. to p_T >

The M_{inv} and $<p_T>$ fits have been done independently, fixing the signal parameters in the $<p_T>$. In order to check the effect of the errors of the M_{inv} fit on the $<p_T>$, a simultaneous fit of the $<p_T>$ and

This has been tested on several bins in pp and pA resulting in a 0.5% difference on the p_T and negligible on the $N_{J/\Psi}$

Systematic uncertainties

Since we compute relative quantities, just uncorrelated uncertainties remain at first order

- AccxEff MC input: Tests with different input distributions
- Signal extraction: Systematics tests on the relative $N_{J/\Psi}$ and relative $< p_T >$
- Fnorm: Difference between the offline method and rescaled bin by bin global Fnorm
- <p_T> extraction method effects:
 - Difference between input $\langle p_T \rangle$ and reconstructed in the simulation
 - Variation of the J/ Ψ <p_T> with the M_{inv} due to detector effects
 - Propagation of the signal parameters uncertainties with a combined fit
- Multiplicity: Uncertainty in V0AND efficiency correction, and systematic uncertainty on the multiplicity determination from Pseudorapidity density of charged particles in p-Pb paper.

Fnorm SYSTEMATICS

Two methods have been used to compute the Fnorm

We take the mean value of the two methods and the difference of the mean to the values as systematic uncertainty

Correction to mean N_{tr}

Corrections to the measured MB mean number of corrected tracklets:

SUMMARY SYSTEMATIC UNCERTAINTIES

	рРb (5.02 теv)	Рbр (5.02 теv)	рр (8 ТеV)	
Nյ/ψ	1.5%	1.5%	1.7 %	$ \rightarrow \begin{array}{l} pA \text{ and } pp \\ 7 \text{TeV papers} \end{array} $
NJ/ψ ^{bin}	1.5-7%	1.5-7%	1.7-8%(2-5%)*	\rightarrow rel. dif. N _{J/Ψ}
N _{J/ψ} ^{bin} /N _{J/ψ}	0.8-3.3%	0.4-1.6%	0.2-1.4%(0.2-2.2%)*	\rightarrow s. extraction
Fnorm	1%	1%	1%	→ pA paper
F norm ^{bin}	0.1-7 %	0.2-4%	0.4-8%(0.2-12%)*	\rightarrow 2 methods
<p<sub>T> & <p<sub>T>^{bin}</p<sub></p<sub>	2 %	2 %	2 %	→ method and MC input
<p<sub>T>^{bin/}<p<sub>T></p<sub></p<sub>	0.1-0.4%	0.1-1.2%	0.1-0.5%	\rightarrow s. extraction
dN _{ch} /dη/< dN _{ch} /dη >	3.9%	3.9%	~15%	$\rightarrow \frac{\text{corr. extremes}}{\text{and MB eff}}$
Pile up	1-4%	1-2%	-	→ Toy MC

 $\epsilon_{MB}(pp@7TeV) = 0.742 + -5\%$

*() pp $|\eta| < 1$

PILE UP STUDY

To study the effect of the pile-up in the multiplicity determination we use a **toy MC** :

- Generate N_{events} MC (bunch crossings)
- For each event generate $n_{Collisions}$ (interactions) with $Poisson(\mu)$ (if $n_{Collisions} > 0 \rightarrow MB$ event)
- Assign randomly to each collision in the event (Z_v, N_{traklets}, n_J/Ψ)
 * Ntracklets: Using the corrected CINT7 N_{tr} distribution for LHC13c (low PU)
 *Z_v: Zvtx distribution of LHC13de
 *n_J/Ψ: LHC13de yield vs N_{tr,corr} (x100 enhanced), Poisson(yield(N_{tr,corr}))
- Search of pile up events (| $Z_v^{col} Z_v^{col} | < 2,1,0.2 \text{ cm}$)

* if PU the tracklets are summed*We take all the Jpsi in the event

- Main Z_v = collision with higher $N_{tracklets}$ (This will be the event multiplicity)
- $|Z_v|$ cut < 10 cm

With this ingredients we compute the resulting N_{tr} distribution and J/Ψ yield, and compare with the data(LHCI3c) results

PILE UP STUDY

To study the effect of the pile-up in the tracklets multiplicity determination we use a toy MC.

PILE UP STUDY

We take as systematic uncertainty the maximum difference in each bin (for $\mu = 0.043$ or 0.038)

ACCEPTANCE imes EFFICIENCY

RELATIVE YIELD AND <*p***T> vs MID-***y*
RELATIVE MULTIPLICITY UNCERTAINTIES

Only uncorrelated systematic uncertainties remains at first order in relative quantities

	Forward-y	Backward-y
Extraction method N _{J/ψ} ^{bin}	I.5-7 %	I.5-7 %
S. Extraction $N_{J/\psi} {}^{bin}/N_{J/\psi}$	I.5-3.3 %	I.5-4.6 %
<p⊤> MC input</p⊤>	2 %	2 %
Extraction $\langle p_T \rangle / \langle p_T \rangle^{int.}$	0.1-0.4 %	0.1-1.2 %
F	I-7 %	I-4%
<dn<sub>ch/dη></dn<sub>	3.9%	3.9%
Pile up	I-4%	I-2%