Isolated γ , π^{o} -hadrons and π^{o} -jets correlations in ALICE

Gustavo Conesa Balbastre

Results presented at QM2014, collaboration with China and Japan and results from N. Arbor thesis (not final)

Laboratoire de Physique Subatomique et de Cosmologie

Introduction

- At the initial stages of the heavy-ion collision, hard probes (partons) are produced
- Partons traverse the hot, dense and colored QCD medium, the Quark-Gluon Plasma (QGP)

- Partons lose energy via radiative (gluon emission) and collisional processes in the QGP: Jet-quenching
- Is their production mechanism modified with respect to collisions without QGP? References:
 - pp collisions: in any case measurement interesting for pQCD test
 - p-Pb collisions: consider initial state effects

Experimental observables

Single hadron and jet production yields: the Nuclear Modification Factor

$$R_{AA,pA}(p_T, y) = \frac{d^2 N_{AA,pA} / dy dp_T}{\left\langle N_{coll} \right\rangle \times d^2 N_{pp} / dy dp_T}$$

$$\langle N_{coll} \rangle = \langle T_{AA} \rangle \sigma_{pp}^{INEL}$$

- R_{AA, pA} = 1, if no medium or initial state effect
- Particle identification can help to understand energy loss dependences (quark vs gluon, quark mass, ...)

Parton fragmentation: Jet trigger π⁰ fragmentation function, hadron h^t conditional yields

$$I_{AA,pA} = \frac{1 / N_{AA,pA}^{trigger} dN_{AA,pA}^{assoc}}{1 / N_{pp}^{trigger} dN_{pp}^{assoc}}$$

with $N(p_T \text{ or } z_T \text{ or } x_E)$

- If parton traverses medium, redistribution of jet energy.
 *I*_{AA}=1 if no medium.
- Di-hadron correlation, high p_T trigger
 - Surface bias, mainly gluons
- Prompt γ-hadron correlation
 - Probe all volume with quarks
 - Access to energy of parton before QGP

ALICE

Relevant detectors for high- p_{T} particles and jets:

Trigger and centrality determination 7 V0 & T0

Trackers: TPC & ITS

- 7 PID
 - $\pi^{\pm}/K/p/e^{\pm}$ via *dE/dx*
 - **γ**/ π^0 /η via conversions
- Charged jets components
- Calorimeters: EMCal & PHOS
 - PID: γ/π⁰/η/e[±]
 - Neutral jets components (EMCal)

See talk from Astrid M. on neutral mesons in ALICE

Low $p_T \pi^o R_{AA}$

- π⁰: invariant mass analysis, combined measurement of PHOS calorimeter and trackers
 - 10 times more statistics waiting on tape
- Evolution with respect Vs from SPS to LHC:
 - Increasing Vs leads to more suppression

arXiv:1401.1250

Identified particle R_{AA}

Mesons and baryons show a different behavior for $p_T < 10 \text{ GeV}/c$

- Radial flow plays an important role in this region
- - Chemical composition of high- p_T jet fragments in the medium is similar to that of vacuum jets
- Then, why charged hadron and π^0 triggers in correlation analysis?
 - **7** Can trigger (hardware) and identify π^0 at high p_T
 - Cross check with 2 different systems measuring the trigger: Trackers vs Calorimeter

π° -hadrons/jets azimuthal correlations

- π^0 trigger is quenched: Select high- p_T particles at the surface of medium
- Analysis of EMCal triggered events, π^0 identified in EMCal (trigger), charged hadrons / charged jets measured in TPC+ITS

High $p_{\mathsf{T}}\,\pi^o$ and γ identification in EMCal

- Photon identification in calorimeters
 - **オ** Track veto: neutral clusters
 - Shower shape: 2D distribution of particle cluster energy in the calorimeter cells
 - Circular shape
 - Prompt photons: Isolation
- Neutral mesons identification in calorimeters, 2 ways
 - 2 separated neutral clusters invariant mass
 - Merged clusters splitting + shower shape
 - Ellipsoidal shape
 - Split sub-clusters invariant mass

 $\lambda_0 \approx$ main axis of the ellipse in cell units weighted by cell energy

High $p_T \pi^o$ identification in EMCal

- **and** γ bands well visible in λ_0^2 from data
- How to select π⁰ clusters from merged decays with high purity
 - **Ϡ** Select clusters with large λ_0^2 (>0.3 or over the red line)
 - Split the clusters depending on their local maxima (LM):

- E_{LM}(candidate) E(neighbor cell) > 30MeV
- E_{LM}(seed) = 100 MeV (pp) 200 MeV (Pb-Pb)
- **↗** Form sub-clusters with 3x3 cells around LM
- Select clusters with split Invariant mass, 3 σ , Identification up to p_T =40-50 GeV/c

High $p_T \pi^o$ identification in EMCal

✓ Select merged clusters with Mass=Mean Peak±3σ

Purity of the selection for E > 10 GeV of 95-90% in pp and Pb-Pb

Contamination mainly from unmerged decay γ : very asymmetric decays with $E(\gamma) > 0.8E(\pi^0)$

Xiangrong Zhu thesis π^{o} -hadron azimuthal correlations

Xiangrong Zhu thesis

π^{o} -hadron per trigger yields extraction

red, green: Correlated blue: Un-correlated

- Per trigger yields in 2 regions
 - **7** Near side $|\Delta \phi| < 0.7$
 - Away side $|\Delta \phi \pi| < 0.7$
- Subtract the background with ZYAM (Zero Yield At Minimum). Two corrections considered
 - ◄ Flat background: pp and Pb-Pb
 - ◄ Flow background: Pb-Pb

 $J(\Delta \varphi) = C(\Delta \varphi) - b_0 (1 + 2\langle v_2^{trig} v_2^{assoc} \rangle \cos(2\Delta \varphi))$

7 Use charged pions v_2

Xiangrong Zhu thesis

π^{o} -hadron per trigger yields

Corrected per trigger yield of all detector effects

Background subtracted with flat and flow estimations: Both give similar yields due to small flow at high p_T

Xiangrong Zhu thesis

π^{o} -hadron and di-hadron I_{AA}

- Enhancement of charged hadrons conditional yield on the near side
- Suppression of charged hadrons conditional yield on the away side
- **7** Same result with hadron-hadron and π^0 -hadron
 - **7** Different data sets, di-hadrons is year 2010 and π^0 -hadrons is year 2011

Daisuke Watanabe analysis

π^{o} -jet azimuthal correlations

- Trigger on π^0 , correlate with charged jets:
 - Control parton path length
 - **7** The higher the p_T of the π^0 the longer the parton path length
- Preliminary pp results @ 7 TeV, Pb-Pb next
- Charged Jet reconstruction:
 - Anti kT, R=0.4
 - **7** $p_T^{charge} > 150 \text{ MeV/c, } p_T^{jet} > 10 \text{ GeV/c}$
 - **7** Jet axis: $|\eta| < 0.5$, full azimuth

Daisuke Watanabe analysis

π° -jet azimuthal correlations

- 2 clear jet-peaks are observed at near- and away-side
 - **7** π^0 production is correlated with jet-production
 - **7** jet-yields increase with trigger p_T
- Using jets direct access to jet-modification
 - **7** comparing to $π^0$ -hadron: we may compare jet-matter and hadronmatter interaction influence on $π^0$ production

Daisuke Watanabe analysis

Width of π^{o} -jet azimuthal correlations

- The widths are decreasing with increasing $\pi^0 p_T$,
 - π^0 is produced close to jet-axis
 - **7** π^0 produced in jet-fragmentation
- **No clear difference for different jet** p_{T}
- **Baseline for Pb–Pb to study modification of** π^0 fragmentation in a jet

γ-hadrons correlation

Isolated photon – TPC charged tracks

Photon is not modified by the colored medium Analysis of EMCal triggered data in pp collisions at 7 TeV

See talk from Denise MdG. on gamma-jet correlations in ALICE

Why y-hadrons correlation

≈ 80% γ from decay rejected \rightarrow Still a large contribution below 15 GeV/c

Isolated photons + background clusters

Binned likelihood fit of the λ_0^2 distributions

 x_E estimation in 2 regions perpendicular ($\Delta \phi$) to the photon

$$f(x_{E}^{\gamma}) = \frac{1}{p} f(x_{E}^{cluster \, iso}) - \frac{(1-p)}{p} f(x_{E}^{\pi 0 \, iso}) - f(x_{E}^{UE})$$

It only affects significantly for $x_E < 0.2$

cluster-hadron ($\lambda_0^2 < 0.27$)

Isolated clusters $x_{\rm E}$

- Systematic uncertainties and purity are being reevaluated
- Baseline for Pb-Pb

π° x_E slope

- photon-hadron : slope in agreement with fragmentation function, <z> = 1
 Large uncertainties(!!)
- π^{0} -hadron : slope close to fragmentation functions but deviation visible, $\langle z \rangle < 1$

γ -hadrons correlation in Pb-Pb

Pb-Pb collisions @ √s_{NN} = 2.76 TeV A very very preliminary analysis

- UE very significant in Pb-Pb collisions
- UE depends strongly on centrality
 - **7** We have to subtract the UE from the isolation cone

- **Chosen parameters for now:** R=0.2 and UE subtracted $\Sigma p_T < 3 \text{ GeV}/c$
 - **7** ~85% of γ and ~ 20% of the π^0 pass the selection

- Photon cluster shape similar in pp and central Pb-Pb
 - Apply same selection cut, $\lambda_0^2 < 0.27$
- Estimation of purity in a high multiplicity environment:
 - Prompt photons can be measured

Summary

π^0 -hadrons/jets correlation

- ALICE can identify high p_T π⁰s with shower shape and splitting techniques
- Di-hadron correlation observations (charged trigger in TPC) confirmed when using π⁰ measured with the calorimeter
 - Suppression in the away side
 - Enhancement on the near side
- π⁰-jet correlations base line for
 Pb-Pb established

γ-hadrons correlation

- ALICE can measure prompt photons with shower shape and isolation techniques
- γ-hadron x_E distribution is a measurement of the fragmentation function
- **7** pp baseline is almost ready
- Preliminary Pb-Pb analysis
 - Difficulty of the measurement due to the large UE showed
 - It seems feasible but needs careful studies

π^0 -hadron azimuthal correlations

- **Trigger on high-** $p_T \pi^0$ (EMCal)
- Select mostly jets produced in the surface of the fireball
- Near side → close to hadron trigger
- Away side \rightarrow 180° from hadron trig.
- Correlate with charged hadrons in azimuth

Correction : effets de détecteurs

- Corriger des effets expérimentaux : résolution en énergie (EMCal), efficacité reconstruction traces (TPC, ITS), résolution en impulsion (TPC, ITS)
- Utilisation information Monte-Carlo (avec ou sans effets de détecteurs)
- Incertitudes systématiques : corrections différentes selon la période

Nicolas Arbor thesis

Isolated Photons x_E

↗ If medium is present, redistribution of energy expected

We want to do this in ALICE