FPCP Experimental Summary Tom Browder (University of Hawaii)

Experimental Techniques

Hadrons and Hadronic Decays

Measurements of CKM sides

CP Violation + Rare Decays

The Future.

Developments in accelerator physics and detector technology make progress in flavor physics and CP violation possible.

- *Two especially notable ones with a profound impact at FPCP03:*
- B-factory storage rings have integrated over 100 fb⁻¹ (KEKB achieved L>1 x 10³⁴/cm²/sec)
- CDF: detached vertex trigger allows selection of hadronic B+D decay modes (coming for D0): Blocker, Shapiro, Martin, Boca, Jain

KEKB (8 x 3.5 GeV, ±11 mrad X angle)

PEPII (9 x 3.0 GeV, magnetic sep.)

150 fb⁻¹/ 78 fb⁻¹ used so far

125 fb⁻¹/ 81 fb⁻¹ used so far

$Int(L dt) = 0.149 ab^{-1}$

New Daily Record May 13: 595 pb⁻¹/24 hr

$L=(1.05 \text{ x } 10^{34})/\text{cm}^2/\text{sec}$

Hadronic B Decays at CDF

B_s Mesons and Λ_b Baryons (CDF vertex trigger)

 $\Lambda_b \to \Lambda_c \pi$

 $B_s \rightarrow D_s \pi, D_s \rightarrow \phi \pi$:

golden mode for B_s oscillations

But 10^3 events required for a competitive B_s mixing meas !

Selected Topics in "Brown Muck" N.Isgur (*Le Romantisme de la Boue*)

New Charm Mesons (D_{sJ} and all that)

Hot topics by Barlow, Stone, Shapiro; Chistov, Trabelsi

Mystery of $e^+e^- \rightarrow J/\psi$ (c cbar) production

Hot topic Bondar

+ New $D_s^{(*)}\pi^o$ Resonances (A. Palano et al.)

*"Chance favors the prepared mind"-L.Pasteur

Belle Confirms Both States

Interpretation

What are these new states: a DK molecule or a 4-quark state ? e.g. Barnes, Close and Lipkin, hep-ph/0305025

"Ordinary" excited p-wave c-sbar states: D_s^{**} ?

 D_s^{**} predicted J^p : 0^+ , 1^+ , 1^+ & 2^+ . Two narrow 1^+ & 2^+ found long ago by ARGUS and CLEO. Others predicted to be above DK threshold and have large ~200 MeV widths, but this state is far below DK threshold.

The $D_s^+ \pi^o$ decay from an initial c-sbar state violates isospin, this suppresses the decay width and makes it narrow. Thus, the low mass ensures the narrow width.

Using B \rightarrow D D_s^(*) π^0 (γ) to find new D_s^{**} resonances

Belle:

 $\frac{B(D_{sJ}^*(2460) \rightarrow D_s \gamma)}{B(D_{sJ}^*(2460) \rightarrow D_s^* \pi^0)}$ $= 0.21 \pm 0.07 \pm 0.03$

Search for orbitally excited D_s^{**} mesons in B decay

Using B⁻ \rightarrow D⁺ $\pi^- \pi^-$ to find broad D^{**} resonances.

$$\begin{split} M_{D_2^{*0}} &= (2461.6 \pm 2.1 \pm 0.5 \pm 3.3) MeV/c^2, \\ \Gamma_{D_2^{*0}} &= (45.6 \pm 4.4 \pm 6.5 \pm 1.6) MeV/c^2 \\ B(B^- \to D_2^{*0} \pi^-) \times (D_2^{*0} \to D^+ \pi^-) &= (3.4 \pm 0.3 \pm 0.6 \pm 0.4) \times 10^{-4} \\ M_{D_0^{*0}} &= (2308 \pm 17 \pm 15 \pm 20) MeV/c^2, \\ \Gamma_{D_0^{*0}} &= (276 \pm 21 \pm 18 \pm 60) MeV/c^2 \\ B(B^- \to D_0^{*0} \pi^-) \times (D_0^{*0} \to D^+ \pi^-) &= (6.1 \pm 0.6 \pm 0.9 \pm 1.6) \times 10^{-4} \end{split}$$

Using B⁻ \rightarrow D^{*+} $\pi^- \pi^-$ to find broad D^{**} resonances.

More twists or the end of the $D_s^{(*)}\pi^0$ tale ?

Ds(2460) \rightarrow Ds γ observed by Belle. This establishes that this is a 1⁺ state.

Belle finds that Ds(2420), $Ds(2460)[j_1=1/2]$ produced abundantly in B decay, while the other $j_1=3/2$ states are not.

But the masses are unexpected: the new Ds^{**} 0⁺ and 1⁺ states have nearly the same masses as the D^{**} 0⁺ and 1⁺ states.

c.f. Baarden, Eichten, Hill *G. Bodwin, J. Lee and E. Braaten (PRL 2003) suggest 2-* γ^* *processes may explain apparent large and anomalous* $e^+e^- \rightarrow \psi$ (*c cbar*) *signal seen at Belle.*

Belle Data vs Braaten et al.

No evidence for $e^+ e^- \rightarrow 2 - \gamma^* \rightarrow J/\psi J/\psi$.

[Still have severe disagreement with NRQCD]

Cross section: $\sigma(e^+e^- \rightarrow J/\psi J/\psi)(J/\psi J/\psi \rightarrow 2 \text{ charged}) < 8 \text{ fb}$

CKM Matrix Elements: Length of the sides of the UT (will concentrate on $|V_{ub}|$)

Inclusive semileptonic B Decay

$|V_{ub}|$ using reconstructed tags(Babar)

• Use fully reconstructed B tags

◆ $|V_{ub}| = (4.52 \pm 0.31 (stat) \pm 0.27 (sys))$ ± 0.40(thy) ± 0.09(pert) ± 0.27(1/m_b³)) x10⁻³ *Preliminary*

M_X and q^2 spectrum from Belle "advanced neutrino recon"

 $|V_{ub}| = (3.96 \pm 0.17 (stat) \pm 0.44 (sys) \pm 0.34 (b \rightarrow c) \pm 0.26 (b \rightarrow u) \pm 0.29 (theor)) \times 10^{-3}$

Inclusive $|V_{ub}|$ with $D^{(*)} l \nu$ tagging (Belle)

Experimental Systematics	
Tracking	6.0%
Lepton ID	4.0%
$D^{(*)}l\nu$ rec. efficiency	3.2%
π^{0} reconstruction	3.0%
Normalisation	2.2%
Kaon ID	2.0%
Total	8.9%

 $B
ightarrow X_c l
u$ model $b
ightarrow c, M_{X_c} < 1.8 \ {
m GeV/c^2}$ 2.1%

$B \rightarrow X_u l \nu$ model	
M_X rec. efficiency	5.0%

 $|V_{ub}| = (3.96 \pm 0.17 (stat) \pm 0.44 (sys) \pm 0.34 (b \rightarrow c)$

 $\pm 0.26(b \rightarrow u) \pm 0.29(\text{theor})) \ge 10^{-3}$

Summary of $|V_{ub}|$ (inclusive) from HFAG

Ed Thorndike: "Systematic errors always dominate." (Many are theoretical)

Hadronic Invariant Mass Spectrum for b→u Decay

Luke et al: Usually more phase space is better. Counterintuitive, cut out low M_X and low q^2 where perturbation theory diverges.

M.Luke:	Representative cuts: (a) $q^2 > 6 \text{ GeV}^2$, $m_X <$ (b) $q^2 > 8 \text{ GeV}^2$, $m_X <$ (c) $q^2 > 11 \text{ GeV}^2$, $m_X <$	m_D 46% of rate 1.7 GeV 33% of rate 1.5 GeV 18% of rate
Uncertaint	y Size (in V_{ub})	Improvement?
Δm_b	±80 MeV: 7%, 8%, 10% ±30 MeV: 3%, 3%, 4%	RG improved Υ sum rules, moments of <i>B</i> decay spectra, lattice
$lpha_{s}$	2%, 3%, 7%	full two-loop calculation
$1/m_b^3$ (weak annihi	3%, 4%, 8% lation)	compare B^{\pm} , B^0 compare S.L. width of D^0 , D_S , lattice

See talk by Ligeti

 $|V_{ub}|$ (exclusive): $B \rightarrow \pi \ell \nu, B \rightarrow \rho \ell \nu$

"I invented ρ and η and I don't care what their values are, so why should you ?? The physics here is to determine if the breadth of CPV phenomena are really described by this simple description."

$$\begin{pmatrix}
Vud & Vus & Vub \\
Vcd & Vcs & Vcb \\
Vtd & Vts & Vtb
\end{pmatrix} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho_{\overline{\tau}}(i\eta)) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix}$$
Makoto
Kobayashi
$$\begin{bmatrix}
Makoto \\
Maskawa
\end{bmatrix}$$

CP Violation and Rare Decays

The angles $\varphi_1(\beta)$, $\varphi_2(\alpha)$, prospects for $\varphi_3(\gamma)$ and other forms of CPV: Lacker, Ford, Sagawa, Golutvin, Boca[charm], John[charm], Sozzi[kaons]

Rare Hadronic Decays: Bona, Aihara

Radiative and Electroweak Penguins: Di Lodovico, Ishikawa, Artuso.

Notational Conventions

Three Angles: $(\varphi_1, \varphi_2, \varphi_3)$ or (β, α, γ)

Birthname: Matsui	Nickname: Godzilla
ϕ_1	β
ϕ_2	α
ϕ_3	γ

Belle and Babar measurements of $sin(2\phi_1)$

hep-ex/020825, PRD 66,071102 (2002)

Status/history of results for $sin(2\varphi_1)[sin(2\beta)]$

Belle 2001: $sin(2\phi_1) = 0.99 \pm 0.14 \pm 0.06$

Babar 2001: $sin(2\phi_1) = 0.59 \pm 0.14 \pm 0.05$

First signals for CPV outside of the kaon sector.

Belle 78 fb⁻¹ : $sin(2\varphi_1) = 0.719 \pm 0.074 \pm 0.035$ Babar 81 fb⁻¹: $sin(2\varphi_1) = 0.741 \pm 0.067 \pm 0.033$ Now becoming a precision measurement

Current Belle and BaBar Results for sin(2\varphi_1)

 $sin2\phi_1$ (Belle) =0.719±0.074±0.035 $sin2\phi_1$ (BaBar) =0.741±0.067±0.033

sin2φ₁ (World Av.) =0.734±0.055

From H. Lacker

$B \rightarrow \pi^+ \pi^- CPV CONTROVERSY$

Data: Belle (78 fb⁻¹) versus Babar (81 fb⁻¹)

Comparison of Belle and BaBar ($S_{\pi\pi}$, $A_{\pi\pi}$)

Comparison of Results on $B \rightarrow h h BFs$

Ratios of $B \rightarrow h$ h Branching Fractions

Belle			
update	Modes	Ratio @78 fb $^{-1}$	Ratio @29 fb $^{-1}$
	$\Gamma(\pi^+\pi^-) / \Gamma(K^+\pi^-)$	$0.24 \pm 0.04 \pm 0.02$	$0.24 \ ^+_{-} \ \ ^{0.06}_{0.05} \pm 0.02$
	$2\Gamma(K^+\pi^0) / \ \Gamma(K^0\pi^+)$	$1.16 \pm 0.16 \ {}^+ \ {}^{0.14}_{0.11}$	$1.34 \pm 0.33 \ {}^+ \ {}^{0.15}_{0.14}$
	$\Gamma(K^+\pi^-)/$ $\Gamma(K^0\pi^+)$	$0.91 \pm 0.09 \pm 0.06$	$1.27 \ {}^+ \ {}^{0.22}_{0.23} \pm 0.10$
	$\Gamma(K^+\pi^-)/2\Gamma(K^0\pi^0)$	$0.74 \pm 0.15 \pm 0.09$	$1.41 \begin{array}{c} + & 0.56 \\ - & 0.60 \end{array} \begin{array}{c} + & 0.28 \\ - & 0.27 \end{array}$
	$\Gamma\left(\pi^{+}\pi^{-} ight)/2\Gamma(\pi^{+}\pi^{0})$	$0.45 \pm 0.13 \pm 0.05$	$0.40 \pm 0.15 \pm 0.05$
	$\Gamma(\pi^0\pi^0)$ / $\Gamma(\pi^+\pi^0)$	< 0.92	< 0.83

The deviation of $\Gamma(\pi^+ \pi)/2 \Gamma(\pi^+ \pi^0)$ from unity indicates: either $\varphi_3 > 90^0$ or large FSI or a large color suppressed contribution.

The bound $\Gamma(\pi^0\pi^0)/2 \Gamma(\pi^+\pi^0)$ gives a weak limit on $|\varphi_{2eff} - \varphi_2| < 51^0$ at 90% C.L. (Babar UL)

CP Violation in $B^0 \rightarrow \rho \pi$ decay

Final state is $\pi^+\pi^-\pi^0$: not a CP eigenstate

Four amplitudes contribute:

 $B^0 \rightarrow \rho^+ \pi^- + \overline{B}^0 \rightarrow \rho^- \pi^+ \text{ and } B^0 \rightarrow \rho^- \pi^+ + \overline{B}^0 \rightarrow \rho^+ \pi^-$

$B^0 \rightarrow \rho \pi$ Time-dependence

Decay rate distribution

$$\begin{aligned} f_{B^{0} \text{tag}}^{\rho^{\pm}h^{\mp}}(\Delta t) &= (1 \pm A_{CP}^{\rho h}) \frac{e^{-|\Delta t|/\tau}}{4\tau} \bigg[1 + \bigg((S_{\rho h} \pm \Delta S_{\rho h}) \sin(\Delta m_{d} \Delta t) - (C_{\rho h} \pm \Delta C_{\rho h}) \cos(\Delta m_{d} \Delta t) \bigg) \bigg] \\ f_{\overline{B}^{0} \text{tag}}^{\rho^{\pm}h^{\mp}}(\Delta t) &= (1 \pm A_{CP}^{\rho h}) \frac{e^{-|\Delta t|/\tau}}{4\tau} \bigg[1 - \bigg((S_{\rho h} \pm \Delta S_{\rho h}) \sin(\Delta m_{d} \Delta t) - (C_{\rho h} \pm \Delta C_{\rho h}) \cos(\Delta m_{d} \Delta t) \bigg) \bigg] \end{aligned}$$

Global charge asymmetry Direct CP-violating Mixing/decay interference CP-violating Dilution parameter Linked to $B^0 \rightarrow \rho^- \pi^+$ vs $\overline{B}{}^0 \rightarrow \rho^- \pi^+$

B⁰ $\rightarrow \rho \pi / \rho K$ (*BaBar*)

Results based on 89 million BB pairs.

BR of
$$\rho \pi$$
 and ρK
 $\mathcal{B}(B \to \rho^{\pm} \pi^{\mp}) = (22.6 \pm 1.8 \pm 2.2) \times 10^{-6}$
 $\mathcal{B}(B \to \rho^{\pm} K^{\pm}) = (7.3^{+1.3}_{-1.2} \pm 1.3) \times 10^{-6}$

Charge asymmetry of
$$\rho\pi$$
 and ρK
 $\mathcal{A}_{\rho K} = +0.28 \pm 0.17 \pm 0.08$
 $\mathcal{A}_{\rho\pi} = -0.18 \pm 0.08 \pm 0.03$

$B^0 \rightarrow \rho \pi / \rho K$ (BaBar) : Δt distributions

Direct CP violation in $B^0 \rightarrow \rho \pi$?

 $A_{+-} \equiv \frac{N(\overline{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-}) - N(B_{\rho\pi}^{0} \to \rho^{-}\pi^{+})}{N(\overline{B}_{\rho\pi}^{0} \to \rho^{+}\pi^{-}) + N(B_{\rho\pi}^{0} \to \rho^{-}\pi^{+})} = \frac{A_{CP}^{\rho\pi} - C_{\rho\pi} - A_{CP}^{\rho\pi} \cdot \Delta C_{\rho\pi}}{1 - \Delta C_{\rho\pi} - A_{CP}^{\rho\pi} \cdot C_{\rho\pi}}$ $A_{-+} \equiv \frac{N(\overline{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+}) - N(B_{\rho\pi}^{0} \to \rho^{+}\pi^{-})}{N(\overline{B}_{\rho\pi}^{0} \to \rho^{-}\pi^{+}) + N(B_{\rho\pi}^{0} \to \rho^{+}\pi^{-})} = \frac{A_{CP}^{\rho\pi} + C_{\rho\pi} + A_{CP}^{\rho\pi} \cdot \Delta C_{\rho\pi}}{1 + \Delta C_{\rho\pi} + A_{CP}^{\rho\pi} \cdot C_{\rho\pi}}$

$$A_{+-} = -0.62^{+0.24}_{-0.28} \pm 0.06$$

$$A_{-+} = -0.11^{+0.16}_{-0.17} \pm 0.04$$

Direct CPV in kaons: $Re(\varepsilon'/\varepsilon)$ Results

Large Direct CP Asymmetries for B Decay Modes ?

*Hint from Belle (~2.2 \sigma level) of direct CP violation in B*⁰ $\rightarrow \pi^+ \pi^-$: $A_{\pi\pi} = 0.77 \pm 0.27 \pm 0.08$

Hints from Babar in $B^{\pm} \rightarrow \eta \pi^{\pm}$: $A = -0.50 \pm 0.19$ *as well as in* $B \rightarrow \rho^{+} \pi^{-}$.

Belle anomaly (2.9 σ) in the pure penguin mode B[±] \rightarrow K_S π^{\pm} at 29 fb⁻¹; fluctuated away at 78 fb⁻¹

Summary of Direct CP violation in B Decays

Theoretical Expectations: 5-10 % in QCD Fact or pQCD

Example of $B \rightarrow V V: B \rightarrow \phi K^*$ Angular Analysis

Figure 1: The angles in transversity basis.

 $|A_0|^2 = 0.43 \pm 0.09 \pm 0.04$ $|A_{perp}|^2 = 0.41 \pm 0.10 \pm 0.04$ $\arg(A_{par}) = -2.57 \pm 0.39 \pm 0.09$ $\arg(A_{perp}) = 0.48 \pm 0.32 \pm 0.06$

Not a single CP eigenstate.

No clear FSI signal.

Babar: Observe $B \rightarrow K^{*+} \rho^0$

Belle: Observe $B \rightarrow \rho^+ \rho^0$

Babar: Observe $B \rightarrow D^{*0} K^{*-}$

Extraction of $\gamma(\phi_3)$: $B^0 \rightarrow D^0 K^{(*)0}$ Mode

T-odd correlations in $K_{L,S} \rightarrow \pi^+\pi^-e^+e^-$

BaBar reconstructed

 K^+K^-

BELLE studied both D_1K^- and D_2K^-

 $\begin{array}{l} \mathsf{R_1} = 1.21 \pm 0.25 \pm 0.14 \\ \mathsf{R_2} = 1.41 \pm 0.27 \pm 0.15 \\ \textbf{\textit{A}_{D1K^-}} = +0.06 \pm 0.19 \pm 0.04 \\ \textbf{\textit{A}_{D2K^-}} = -0.18 \pm 0.17 \pm 0.05 \end{array}$

No constraints on γ possible with this statistics \dots

significantly higher statistics precision measurements of D Branching Fractions

Dreams of New Physics and Other Adventures with rare B decays.

Hunting for phases from new physics

Example:

In the SM, $sin(2\varphi_1)^{eff} = sin(2\varphi_1) (B \rightarrow \psi K_S)$

Hunting for new phases in $b \rightarrow s$ penguins

(hep-ph/0209290), J-P Lee, K. Y. Lee; (hepph/0208226) B. Dutta, C.S. Kim and S. Oh; (hepph/0208091), M. Raidal; (hep-ph/0208087), M. Ciuchini, L. Silvestrini; (hep-ph/0208016), A. Datta;(hep-ph/0208005), H. Murayama;(hepph/0207356), G. Hiller; (hep-ph/0207070), M-B. Causse; (hep-ph/0208080) Y. Nir

Belle: $\sin 2\varphi_{1eff} = -0.73 \pm 0.64 \pm 0.22$ Babar: $\sin 2\varphi_{1eff} = -0.18 \pm 0.51 \pm 0.09$

 2.7σ off

 $WA: sin2\phi_{1eff} (\varphi K_{S}) = -0.38 \pm 0.41$

Hunting for new phases in $b \rightarrow s$ penguins

 $\eta' K_{S}$

Large rates for exclusive and inclusive $B \rightarrow \eta' X_s$ decays.

Mystery of Large Inclusive $B \rightarrow \eta' X_s$

 η

u

 K^{+}, K^{*+}

+0.7c.f. Babar: hep-ex/0109034: $B \rightarrow \eta' X_s = (6.8)$ $_{-0.5}$)x 10⁻⁴ -1.0

BaBar: $B \rightarrow \eta' X_s$ inclusive

 $N(\eta' K_s) = 146 \pm 12$

Search for New Physics in the $B \rightarrow \eta' K_S$ penguin decay.

> +0.05 Belle: $S_{\eta'Ks} = 0.71 \pm 0.37$ -0.06

Babar: $S_{\eta'Ks} = 0.02 \pm 0.34 \pm 0.03$

In the absence of New Physics, $S_{\eta'Ks} = \sin(2\varphi_1)$ (a.k.a. $\sin(2\beta)$)

Current WA: sin(2φ₁)=0.734±0.055

Status of new phases in $b \rightarrow s$ penguins

γ Energy spectrum in $B \rightarrow X_s \gamma$

B→K^{*}(892)γ – **BELLE**

- First observations of $B \rightarrow K^*(892)\gamma$ and $B \rightarrow K^*_2(1430)\gamma$ by CLEO (1993 and 2000).
- Much higher statistics now. Results close to being systematics limited.
- Measurements of Branching Fractions, CP asymmetries and isospin asymmetry between B⁰ and B[±] decay widths

$B(B \rightarrow K^* \gamma)$ results

The Hunt for the EW Penguin: $B \rightarrow X_s l^+ l^-$

Figure 1: Standard Model diagrams for the decays $B \to K^{(*)} \ell^+ \ell^-$.

As in b \rightarrow s γ , heavy particles in the loops can be replaced with NP particles (e.g.W⁺ \rightarrow H⁺)

Note contributions from virtual γ^* , W, Z^* and internal t quark.

Belle 2002: Observation of *inclusive* $B \rightarrow X_s l^+ l^-$

BF(B \rightarrow X_sl⁺l⁻) = (6.1±1.4^{+1.3}_{-1.1}) x 10⁻⁶

Sensitivity to new physics in $A_{FB} (B \rightarrow K^* l^+ l^-)$

A_{FB} statistical uncertainties for pure signal

A _{FB} X _s e⁺e⁻ + X _s μ⁺μ⁻	500 fb ⁻¹	1000 fb ⁻¹	10 ab ⁻¹	50 ab ⁻¹
ŝ < ŝ ₀	-0.02 ± 0.11	-0.02 ± 0.08	-0.017 ± 0.024	-0.017 ± 0.011
ŝ > ŝ ₀	0.17 ± 0.09	0.17 ± 0.07	0.173 ± 0.021	0.173 ± 0.009

zero point of the asymmetry: A_{FB} = 0 for $\hat{s} = \hat{s}_0$ = 0.162 \pm 0.008 (NNLL)

• A_{FB} statistical uncertainties for background-subtracted full sample

A _{FB} X _s e ⁺ e ⁻ + X _s μ ⁺ μ ⁻	500 fb ⁻¹	1000 fb ⁻¹	10 ab ⁻¹	50 ab ⁻¹
ŝ < ŝ ₀	-0.02 ± 0.17	-0.02 ± 0.12	-0.017 ± 0.039	-0.017 ± 0.017
ŝ > ŝ ₀	0.17 ± 0.22	0.17 ± 0.16	0.173 ± 0.050	0.173 ± 0.022

⇒ A_{FB} clearly needs high-luminosity B Factory

Sensitivity to new physics phases

New Top Mass Measurements

Question: Why look for new physics at a super Bfactory or LHCB/BTeV when you have the LHC that produces new particles directly ?

Answer: They are complementary; LHC does masses, B Factory does phases (and couplings).

Example: Beautiful, sophisticated and precise measurements of the top quark mass at the Tevatron (Coca). However, the couplings $|V_{ts}|, |V_{td,}|$ and most importantly the phase of (V_{td}) cannot be measured in direct top production.

The Future

Super/Upgraded e⁺ e⁻ B Factories: Yamauchi, Giorgi

Hadronic B Experiments: Honscheid, Matteuzi, Ohlsson-Malek

Tau-charm: Urheim(presented by Artuso)

Neutrinos: Cavata
Super KEKB, PEP-II, L=10³⁵⁻³⁶/cm²/sec; BTeV, LHCb and B physics at ATLAS/CMS

G. Hiller

Figure 4. Flavor/CP yield of models of electroweak symmetry breaking.

Scenarios for flavor physics beyond the SM.

Signatures in time-dependent CPV (φK_S), rare decays (e.g. $b \rightarrow s l^+ l^-$, $b \rightarrow s \gamma$)

KEKB upgrade strategy

PEP-II Upgrade Plans			<2005	>2005	
		Now	Projected	Upgrad	е
	LER energy	3.1	3.1	3.1?	GeV
-	HER energy	9.0	9.0	9.0?	GeV
-	LER current	1.8	2.4	3.3	А
-	HER current	1.0	1.4	1.5	А
	β_v^*	12.5	9.0	5.0	mm
	β_x^*	35	35	35	cm
	X emittance	50	50	50	nm-rad
	Estimated σ_{y}^{*}	5	4.3	3	μm
	Bunch spacing	1.89	1.89	1.26	m
	Number of bunches	921	1130	1700	
	• Collision angle	head-on	head-on	±3.25	mrads
	Beam pipe radius	2.5	2.5	2.5	cm
	Luminosity	5×10 ³³	8×10 ³³	2×10 ³⁴	cm ⁻² se

M. Giorgi

0

Meters

M. Sultran

-2.5

-5

Fully simulated bb event at LHCB

- incl. multiple scattering, hadronic interactions
- decays in flight
- Kalman fitter

BTeV & LHC Dedicated Hadron Collider B experiments Tevatron LHC BTeV Detector Layout Magnet being

Favorable x-section/background ratio (10³) compared to HERA-B, old FNAL fixed target. Radiation hard technologies.

Overview of the LHC B physics potential

LH $\sigma_{\text{total}} = 1$	orbadie and a strength of the	
$\sigma_{bb} = 50$	^{- Δ} LHCb LHCb	
ATLAS & CMS Central detectors	LHCb Forward detector	10 230μb
$ \eta < 2.5$, $p_{\rm T} > 10 {\rm ~GeV}$ $\sigma_{\rm B-hadron} = 100 {\rm ~\mu b}$	$1.9 < \eta < 4.9, p_T > 2 \text{ GeV}$ $\sigma_{\text{B-hadron}} = 230 \mu\text{b}$	$1 \qquad \begin{array}{c} -2 \qquad 0 \qquad 2 \qquad 4 \qquad 6 \\ \hline \text{eta of B-hadron} \end{array}$
$L = 1-2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ 10 ³⁴ cm ⁻² s ⁻¹ for rare decays	$L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	
Exclusive channels ~ $2.8 \ 10^6$ Dominated by bb $\rightarrow J/\Psi$ Hadronic channels: < 10^5 (however all with muon tag)	Exclusive channels ~ $3.4 \ 10^{6}$ $1.7 \ 10^{6} \text{ bb } \rightarrow \text{J/}\Psi$ Hadronic channels ~ $1.7 \ 10^{6}$	
		² 20 ¹ 17

BTeV & LHCb

- Sensitivity to B_s mixing up to $x_s \sim 80$
- Large rare decay rates $B^{o} \rightarrow K^{*o}l^{+}l^{-} \sim 2500$ events in 10⁷ s
- Measurement of γ to $\sim 7^{\circ}$ using $B_s \rightarrow D_s K^-$
- Measurement of α to ~4° using B° $\rightarrow \rho \pi$ (BTeV)
- Measurement of χ [related to the phase of B_s mixing] to ~1° using B_s° \rightarrow J/ ψ η (BTeV) or B_s° \rightarrow J/ ψ φ

Purely leptonic decays $(f_{D_{,}} f_{D_{s}})$ \rightarrow CLEO-C is starting

f_{D_s} Values from $D_s \rightarrow \mu \upsilon$

*MM*² of $D^+ \rightarrow \mu^+ \nu$ with 1 fb⁻¹ of CLEO-C data [2% precision]

Nous remercions les organisateurs

We thank the organizers どもありがとございました

BACKUP SLIDES

An independent estimate of the Gronau-Wyler construction

Uses current central values