FPCP 2003: Theory Summary Patricia Ball

IPPP, Durham

Excellent talks on
 \square New Physics: Hiller

Excellent talks on
 - New Physics: Hiller
 - Old Physics:

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
. Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli

- Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London
\square QCD Factorisation: Fleming, Kou, Melic, Pirjol

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

- QCD Factorisation: Fleming, Kou, Melic, Pirjol
\square Special Topics:

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

- QCD Factorisation: Fleming, Kou, Melic, Pirjol
- Special Topics:
- Charm Physics: Petrov

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

- QCD Factorisation: Fleming, Kou, Melic, Pirjol
- Special Topics:
- Charm Physics: Petrov
- Semileptonic Decays: Ligeti, Uraltsev

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

- QCD Factorisation: Fleming, Kou, Melic, Pirjol
\square Special Topics:
- Charm Physics:
- Semileptonic Decays: Ligeti, Uraltsev
\square CPV and neutrinos: Lavignac

Excellent talks on

- New Physics: Hiller
- Old Physics:

Lattice: Becirevic, Davies, Martinelli
Phenomenological Methods: Fleischer, Gronau, Le Yaouanc, London

- QCD Factorisation: Fleming, Kou, Melic, Pirjol
- Special Topics:
- Charm Physics:
- Semileptonic Decays: Ligeti, Uraltsev
- CPV and neutrinos: Lavignac

CPV and Cosmology:

Time is short - restrict report to

- New Physics:
- Old Physics:

Lattice:
Phenomenological Methods:
QCD Factorisation:

New Physics

G. Hiller: New Phys. \& Flavour Viol.

An excursion into the realm of free-roaming imagination. . .
\square NP (with extended scalar sector) often induces a

G. Hiller: New Phys. \& Flavour Viol.

An excursion into the realm of free-roaming imagination. . .
\square NP (with extended scalar sector) often induces a
\square models can be classified acc. to the amount of FV:
\square minimal flavour violation (MFV): the same FV as in the SM (Yukawa couplings \rightarrow quark mixing via CKM matrix)

- non-MFV: new sources of FV

G. Hiller: New Phys. \& Flavour Viol.

An excursion into the realm of free-roaming imagination. . .

- Ex.: $b \rightarrow s \gamma$

- in MFV (e.g. MSSM with flavour-blind SUSY breaking): all diagrams with CKM factors $\sim V_{t b} V_{t s}^{*}$
in non-MFV (e.g. MSSM with flavour-dep. soft SUSY breaking terms): gluino-loops with non-flavour diagonal squark-propagators:

G. Hiller: New Phys. \& Flavour Viol.

non-MFV can induce patterns of BRs and CP-violation which completely differ from the SM: large B_{s} mixing phase, non-CKM phase in $b \rightarrow s \bar{s} s$ etc.

G. Hiller: New Phys. \& Flavour Viol.

non-MFV can induce patterns of BRs and CP-violation which completely differ from the SM: large B_{s} mixing phase, non-CKM phase in $b \rightarrow s \bar{s} s$ etc.

- bottom-up approach for SUSY model-builders: constrain squark-mass matrix from observed flavour-changing processes, distinguish between MFV and non-MFV SUSY-breaking scenarios:

Lattice

C. Davies: Breakthrough in LQCD

Generic problem of lattice calculations:

C. Davies: Breakthrough in LQCD

Hopeful future

MILC collaboration have used new 'improved staggered' formalism to include dynamical u, d, and s quarks and with $m_{u / d}$ as low as $m_{s} / 6$ i.e. close to the real world.

Theoretical caveat is that each flavour is quadrupled on lattice and need to divide by 4 in appropriate places.

Find (MILC/HPQCD/FNAL) that exptl answer is obtained for a wide range of simple quantities from heavy and light quark physics, i.e. a consistent theory at last!

Davies et al, hep-lat/0304004, Science, 16th May 2003

C. Davies: Breakthrough in LQCD

Hopeful future

 include dynamical u, d, and s quarks and with $m_{u / c}$ i.e. close to the real world.

Theoretical caveat is that each flavour is quadruplec need to divide by 4 in appropriate places.

Find (MILC/HPQCD/FNAL) that exptl answer is ol range of simple quantities from heavy and light qua consistent theory at last!

Davies et al, hep-lat/0304004, Science, 16th May 2003

C. Davies: Breakthrough in LQCD

Hopeful future

MILC collaboration have used new 'improved staggered' formalism to include dynamical u, d, and s quarks and with $m_{u / d}$ as low as $m_{s} / 6$ i.e. close to the real world.

Theoretical caveat is that each flavour is quadrupled on lattice and need to divide by 4 in appropriate places.

Find (MILC/HPQCD/FNAL) that exptl answer is obtained for a wide range of simple quantities from heavy and light quark physics, i.e. a consistent theory at last!

Davies et al, hep-lat/0304004, Science, 16th May 2003
may
be
lic: correct
by taking 4th
root of fermion
determinant:

D. Becirevic: Heavy Meson FFs

Heavy quarks on the lattice rather tricky...need extrapin quark mass (from ca. 1.5 GeV to $\left.m_{b}\right)$. .

D. Becirevic: Heavy Meson FFs

Heavy quarks on the lattice rather tricky... need extrapin quark mass (from ca. 1.5 GeV to m_{b}). . . can fix energy of final state meson and extrapolate in m_{b}, which implies

D. Becirevic: Heavy Meson FFs

$B \rightarrow \rho \ell \nu$ form factors
Heavy quarks on the lattice rather tricky... need extrapin quark mass (from ca. 1.5 GeV to m_{b}). . . can fix energy of final state meson and extrapolate in m_{b}, which implies
harder :
more form factors, less constraints on the shapes

SPQcar [preliminary!] Results this summer.
Combine lattice data at large q^{2} with LCSR results at low $q^{2, s}$ (P.Ball, V.Braun, 1998)

D. Becirevic: Heavy Meson FFs

Alternative:
fix momentum transfer
q^{2} and extrapolate in m_{b}

D. Becirevic: Heavy Meson FFs

Result [still preliminary!]:

$$
T^{B \rightarrow K^{*}}(0)=0.25(5)(2), \quad \frac{T^{B \rightarrow K^{*}}(0)}{T^{B \rightarrow \rho}(0)}=1.1(1)
$$

Compared to the LCSR values, these results are much smaller:

$$
T^{B \rightarrow K^{*}}(0)=0.38(6), \quad \frac{T^{B \rightarrow K^{*}}(0)}{T^{B \rightarrow \rho}(0)}=1.31(7)
$$

Phenomenological Methods

M. Gronau: CPV beyond $B \rightarrow J / \psi K_{S}$

γ from $B^{ \pm} \rightarrow D K^{ \pm}$

$$
\begin{aligned}
& D_{\mathrm{CP} \pm}^{0}=\frac{1}{\sqrt{2}}\left(D^{0} \pm \bar{D}^{0}\right) \quad \text { MG, London, Wyler; variants } \\
& D_{\mathrm{CP}+}^{0} \rightarrow K^{+} K^{-}, \quad D_{\mathrm{CP}-}^{0} \rightarrow K_{S} \pi^{0}, \quad D^{0} \rightarrow K^{-} \pi^{+} \\
& A\left(B^{-} \rightarrow D_{ \pm}^{0} K^{-}\right)=\frac{1}{\sqrt{2}}\left[A\left(B^{-} \rightarrow D^{0} K^{-}\right) \pm A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)\right] \\
& \text {no penguin, no } \quad b \rightarrow c \bar{u} s \text { phase }=0 \quad b \rightarrow u \bar{c} s \text { phase }=-\gamma \\
& \text { approximation } \quad \text { measured } \quad \text { difficult to measure } \\
& \text { ratio } r \sim 0.2 \quad \\
& R_{ \pm}=\frac{\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{-}\right)+\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{+}\right)}{\Gamma\left(D^{0} K^{-}\right)}=1+r^{2} \pm 2 r \cos \delta \cos \gamma \\
& A_{ \pm}=\frac{\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{-}\right)-\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{+}\right)}{\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{-}\right)+\Gamma\left(D_{\mathrm{CP} \pm}^{0} K^{+}\right)}= \pm 2 r \sin \delta \sin \gamma / R_{ \pm}
\end{aligned}
$$

M. Gronau: CPV beyond $B \rightarrow J / \psi K_{S}$

experimental situation

$$
\begin{aligned}
& R(K / \pi) \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} \pi^{-}\right)} \quad R(K / \pi)_{ \pm} \equiv \frac{\mathcal{B}\left(B^{ \pm} \rightarrow D_{\mathrm{CP} \pm}^{0} K^{ \pm}\right)}{\mathcal{B}\left(B^{ \pm} \rightarrow D_{\mathrm{CP} \pm}^{0} \pi^{ \pm}\right)} \\
& \text {all 3 quantities measured } \Rightarrow R_{ \pm}=\frac{R(K / \pi)_{ \pm}}{R(K / \pi)} \\
& R_{+}=1.09 \pm 0.16 \\
& R_{-}=1.30 \pm 0.25 \\
& \Rightarrow r=0.44_{-0.24}^{+0.14} \quad A_{+}=0.07 \pm 0.13 \quad \text { (Belle, BaBar) } \\
& \Rightarrow \quad A_{-}=-0.19 \pm 0.18 \text { (Belle) } \\
& \text { av }=0.11 \pm 0.11
\end{aligned}
$$

$R_{ \pm}=1+r^{2} \pm 2 r \cos \delta \cos \gamma \geq \sin ^{2} \gamma, \quad$ both $R_{ \pm} \geq 1$ unlikely either $R_{+}<1$ or $R_{-}<1$ implies constraint on γ
one may plot $R_{ \pm}$vs γ for allowed $A_{ \pm}$(same as $B^{0} \rightarrow K^{+} \pi^{-}$)
need more precise $R_{ \pm}$to constrain

R. Fleischer: Strategies in El Dorado

- $\underline{B}_{s} \rightarrow J / \psi \phi:$
- B_{s} counterpart of $B_{d} \rightarrow J / \psi K_{\mathrm{S}} \Rightarrow \phi_{s}$
- Sensitive to new-physics effects in $B_{s}^{0}-\overline{B_{s}^{0}}$ mixing.
- $\underline{B}_{s} \rightarrow K^{+} K^{-}$:
- Complements $B_{d} \rightarrow \pi^{+} \pi^{-} \Rightarrow \gamma$
- Sensitive to new-physics effects in the penguin sector.
- $\underline{B_{s} \rightarrow D_{s}^{(*) \pm} K^{\mp}}:$
- Complements nicely $B_{d} \rightarrow D^{(*) \pm} \pi^{\mp} \Rightarrow \gamma$
- Tree decays, i.e. small sensitivity on new-physics effects.

D. London: 3xProd. \& CPV in $B \rightarrow V V$

- Angular analysis in $B \rightarrow V_{1} V_{2}$: measure triple-product correlations $\left(\vec{\epsilon}_{1}^{T} \times{\overrightarrow{\epsilon_{2}}}^{T}\right) \cdot \vec{p}$

D. London: 3xProd. \& CPV in $B \rightarrow V V$

\square Angular analysis in $B \rightarrow V_{1} V_{2}$: measure triple-product correlations $\left(\vec{\epsilon}_{1}^{T} \times{\overrightarrow{\epsilon_{2}}}^{T}\right) \cdot \vec{p}$
$\square \mathrm{CPV}$ signal to be found in $B \rightarrow V_{1} V_{2} \quad \bar{B} \rightarrow \bar{V}_{1} \bar{V}_{2}$:

$$
\mathcal{A}_{T} \propto \sin \phi \cos \delta
$$

(i.e. maximal in naive and BBNS factorisation)

D. London: 3xProd. \& CPV in $B \rightarrow V V$

- Angular analysis in $B \rightarrow V_{1} V_{2}$: measure triple-product correlations $\left(\vec{\epsilon}_{1}^{T} \times{\overrightarrow{\epsilon_{2}}}^{T}\right) \cdot \vec{p}$
$\square \mathrm{CPV}$ signal to be found in $B \rightarrow V_{1} V_{2} \quad \bar{B} \rightarrow \bar{V}_{1} \bar{V}_{2}$:

$$
\mathcal{A}_{T} \propto \sin \phi \cos \delta
$$

(i.e. maximal in naive and BBNS factorisation)

- In the SM, all triple products involving light mesons either vanish or are very small

Factorisation and All That

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T \exp (i \gamma)+| P \exp (i \delta)
$$

want weak phase γ

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T| \exp (i \gamma)+\mid P \exp (i \delta)
$$

- want weak phase γ need to input $\&$

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T| \exp (i \gamma)+|P| \exp (i \delta)
$$

- want weak phase γ
\square need to input
\&
- various phenomenological methods for effectively measuring QCD quantities (isospin analysis)

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T| \exp (i \gamma)+|P| \exp (i \delta)
$$

- want weak phase γ
\square need to input
\&
- various phenomenological methods for effectively measuring QCD quantities (isospin analysis)
- calculation from first principles \& in a model-independent way

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T| \exp (i \gamma)+|P| \exp (i \delta)
$$

- want weak phase γ
- need to input
\&
- various phenomenological methods for effectively measuring QCD quantities (isospin analysis)
- calculation from first principles \& in a model-independent way
- historically: quark models \& naive factorisation

A Longstanding Problem...

$$
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=|T \exp (i \gamma)+|P| \exp (i \delta)
$$

- want weak phase γ
- need to input
\&
- various phenomenological methods for effectively measuring QCD quantities (isospin analysis)
a calculation from first principles \& in a model-independent way
- historically: quark models \& naive factorisation
\square since 1999: various methods of improved factorisation

Part I of the Story: BBNS

Factorization à la BBNS

Generic amplitude for heavy-to-light transitions:

Beneke/Buchalla/
Neubert/Sachrajda,
PRL 83 (1999) 1914

$$
\begin{array}{rll}
A(B \rightarrow \pi \pi) & =f_{+}^{B \rightarrow \pi}(0) \int_{0}^{1} d x T^{I}(x) \phi_{\pi}(x)+\int_{0}^{1} d \xi d x d y T^{I I}(\xi, x, y) \phi_{B}(\xi) \phi_{\pi}(x) \phi_{\pi}(y) \\
& =A(B \rightarrow \pi \pi)_{\text {fact }} \times\left(1+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)\right) & \begin{array}{l}
f_{+}^{B \rightarrow \pi}: \text { weak de- } \\
\text { cay form factor }
\end{array}
\end{array}
$$

- shown to be valid at 1-loop in QCD
- naive factorization works up to (calculable) radiative corrections and (non calculable) power-suppressed terms
$T^{I, I I}$: process-dependent hard scatte-
ring amplitudes

$\phi_{B, \pi}(x)$: universal light-cone distribution amplitudes
- describe collinear momentum-distribution of quarks in meson
- obtained from Bethe-Salpeter WFs by integration over transverse momenta
- well-studied for light mesons (e.g. π EM form factor)

Part II: E. Kou: pQCD Factorisation

Form Factor Calculation in PQCD

see. e.g. Y.Y. Keum, H.-n. Li, A.I. Sanda, PRD63 (2001)

The form factor is written as a convolution of the distribution amplitude and the hard scattering amplitude:

$$
\begin{aligned}
& \left\langle\pi\left(P_{2}\right)\right| \bar{b} j_{\mu} u\left|B\left(P_{1}\right)\right\rangle=\int_{0}^{1} d x_{1} d x_{2} \int_{0}^{\infty} d b_{1} d b_{2} \\
& \quad \mathcal{P}_{\pi}\left(x_{2}, b_{2}, P_{2}, \mu\right) T_{H}\left(x_{1}, x_{2}, b_{1}, b_{2}, Q, \mu\right) \mathcal{P}_{B}\left(x_{1}, b_{1}, P_{1}, \mu\right)
\end{aligned}
$$

where x_{i} and b_{i} are momentum fraction and impact parameter of the quark inside meson, respectively. $Q^{2}=-\left(P_{2}-P_{1}\right)^{2}$.

- Distribution Amplitude

$$
\begin{aligned}
& \mathcal{P}_{M}(x, b, P, \mu)= \\
& \quad \exp \left[-s(x, b, Q)-s(1-x, b, Q)-2 \int_{1 / b}^{\mu} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{G}(g(\bar{\mu}))\right] \Psi_{M}(x, 1 / b, P)
\end{aligned}
$$

where $s(x, b, Q)$ is Sudakov exponent. Ψ_{M} denotes a wave function of meson M.

- Hard Scattering Amplitude

$$
\begin{aligned}
& T_{H}\left(x_{1}, x_{2}, b_{1}, b_{2}, Q, \mu\right) \sim \int \frac{d^{2} \mathbf{k}_{\perp 1,2}}{(2 \pi)^{2}} \exp \left[-i \mathbf{k}_{\perp 1,2} \cdot \mathbf{b}_{1,2}\right] \\
& \frac{C_{F}}{x_{1} x_{2} Q^{2}+\left(\mathbf{k}_{\perp 1}-\mathbf{k}_{\perp 2}\right)^{2}} \frac{1}{\left(x_{2} Q^{2}+\mathbf{k}_{\perp 2}^{2}\right)} \exp \left[4 \int_{\mu}^{t} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{q}(g(\bar{\mu}))\right]
\end{aligned}
$$

where t is the largest scale appearing in $T_{H}, t=\max \left(\sqrt{x} M_{B}, 1 / b\right)$.

Part III: S. Fleming/D. Pirjol: SCET

Factorization

In the large energy region $E_{\pi} \gg \Lambda$, the heavy-light form factors satisfy a factorization theorem

Bauer, DP, Stewart

$$
\begin{aligned}
f_{B \rightarrow P}\left(q^{2}\right)= & C(\mu) \zeta\left(E_{\pi}, \mu\right)+\int_{0}^{1} d x d k_{+} C_{i}(\mu, z) J_{i}\left(x, z, k_{+}, \mu\right) \phi_{B}^{+}\left(k_{+}\right) \phi_{\pi}(x) \\
& \text { "nonfactorizable" }
\end{aligned}
$$

Part III: S. Fleming/D. Pirjol: SCET

Factorization

In the large energy region $E_{\pi} \gg \Lambda$, the heavy-light form factors satisfy a factorization theorem

Bauer, DP, Stewart
$f_{B \rightarrow P}\left(q^{2}\right)=C(\mu) \zeta\left(E_{\pi}, \mu\right)+\int_{0}^{1} d x d k_{+} C_{i}(\mu, z) J_{i}\left(x, z, k_{+}, \mu\right) \phi_{B}^{+}\left(k_{+}\right) \phi_{\pi}(x)$
"nonfactorizable"
"factorizable"

- two large scales $m_{b} \& \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$, separated by eff. field theory techniques
- large logs resummed by RG methods
- systematic expansion in $1 / m_{b}$ of Lagrangian and (not yet done)

Part III: S. Fleming/D. Pirjol: SCET

Progress at zero recoil

- Normalization is not fixed from a symmetry
- Heavy quark symmetry determines the scaling of the form factors + symmetry relations among the tensor $T_{1,2}\left(q^{2}\right)$, vector $V\left(q^{2}\right)$ and axial $A\left(q^{2}\right)$ form factors Isgur, Wise; Burdman, Donoghue, 1991
$\begin{aligned} T_{1}\left(q^{2}\right)-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} T_{2}\left(q^{2}\right) & =\frac{2 m_{B}}{m_{B}+m_{V}} V\left(q^{2}\right)+O\left(m_{b}^{-1 / 2}\right) \\ T_{1}\left(q^{2}\right)+\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} T_{2}\left(q^{2}\right) & =-\frac{m_{B}^{2}+m_{V}^{2}-q^{2}}{m_{B}\left(m_{B}+m_{V}\right)} V\left(q^{2}\right)+\frac{m_{B}+m_{V}}{m_{B}} A_{1}\left(q^{2}\right)+O\left(m_{b}^{-\frac{3}{2}}\right.\end{aligned}$
Extract $T_{1}\left(q^{2}\right)$ by combining them, which requires knowledge of the $O\left(m_{b}^{-1 / 2}\right)$ correction in the first relation

Recently computed
Grinstein, DP, 2002

$$
T_{1}\left(q^{2}\right)=\frac{m_{B}-\bar{\Lambda}}{m_{B}+m_{V}} V\left(q^{2}\right)-\mathcal{D}\left(q^{2}\right)+O\left(m_{b}^{-3 / 2}\right)
$$

$$
\text { FPCP } 2003 \text { - p. } 12
$$

- two large scales $m_{b} \& \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$, separated by eff. field theory techniques
- large logs resummed by RG methods
- systematic expansion in $1 / m_{b}$ of Lagrangian and (not yet done)

What the Pandit has to Say

A few words of caution...

use of symmetries (tike heayy-quark symmeryy) has proven to be very useful in high-energy physics

What the Pandit has to Say

A few words of caution...

use of symmetries (like heavy-quark symmetry) has proven to be very useful in high-energy physics - if they are not too badly broken

What the Pandit has to Say

A few words of caution...

\square use of symmetries (like heavy-quark symmetry) has proven to be very useful in high-energy physics - if they are not too badly broken
BBNS: OK in heavy quark limit - breaks down in $O\left(1 / m_{b}\right)$

What the Pandit has to Say

A few words of caution...

\square use of symmetries (like heary-quark symmetry) has proven to be very useful in high-energy physics - if they are not too badly broken
\square pQCD: all nonfactorisable terms suppressed?
Systematic expansion in QCD pert. th.?
Criticism by Descotes-Genon/Sachrajda
(hep-ph/0109260) conc. Sudakov-resummation?

What the Pandit has to Say

A few words of caution...

\square use of symmetries (like heavy-quark symmery) has proven to be very useful in high-energy physics - if they are not too badly broken

- SCET: good for all-order factorisation proofs - to leading order in $1 / m_{b}$ useful phenomenological tool? For the moment - no numbers!
$B \rightarrow \pi$ FF: beware of
need $\zeta \& \phi_{\pi} \& \phi_{B}$

What the Pandit has to Say

A few words of caution...

\square use of symmetries (like heary-quark symmetry) has proven to be very useful in high-energy physics - if they are not too badly broken
$\square \phi_{B}$: properties under renormalization: evolution with μ causes ϕ_{B} to
(Lange/Neubert, hep-ph/0303082)
Only $\int_{0}^{\infty} \phi_{B}(k, \mu) / k$ has meaningful evolution.

Summary of the Summary

- exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory
\square the good news: theorists take the challenge seriously

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

- the good news: theorists take the challenge seriously they can't really compete

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

- the good news: theorists take the challenge seriously they can't really compete . . . yet
(at least as for nonlep. B decays)

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

- the good news: theorists take the challenge seriously
- the bad news: they can't really compete . . . yet
(at least as for nonlep. B decays)
- more good news: work in progress: lattice, LCSRs, SCET,. . .

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

- the good news: theorists take the challenge seriously
they can't really compete ... yet
(at least as for nonlep. B decays)
\square more good news: work in progress: lattice, LCSRs, SCET,. . .
■ let it be a mutually fruitful competition!

Summary of the Summary

\square exp. accuracy of nonleptonic B BRs and CP-asymmetries starts to challenge theory

- the good news: theorists take the challenge seriously they can't really compete . . . yet
(at least as for nonlep. B decays)
- more good news: work in progress: lattice, LCSRs, SCET,...
\square let it be a mutually fruitful competition!
- my apologies to Alexey, Kolia, Zoltan et al.: beautiful talks, beautiful results: alas, 30 min not enough to give proper appreciation to everybody's contribution

