# *Top: latest results from Tevatron – cross-section and mass*

## Mircea N. Coca

### **University of Rochester, NY- CDF**

For the CDF and D0 collaborations FPCP 2003, Paris, June



## Outline

- Tevatron Status
- The upgrades of the CDF and D0 detectors
- Top Production and Decay
- Top Physics Program for Run II
- First Cross-Section Measurements at
  - 1.96 TeV, in the Dilepton and Lepton+jets channels
- Top Mass Measurements in CDF (Run II) and D0 (Run I)
- Top Physics Prospects

## Tevatron Upgrades/Status



### Run II upgrades

- $E_{CM}$  increase from  $1.8 \rightarrow 1.96$ TeV  $\rightarrow$  larger cross sections
- Higher luminosity
  - Run I peak:2.4x10<sup>31</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - Run II goal:3–4x10<sup>32</sup>cm<sup>-2</sup> s<sup>-1</sup>
  - Run II peak:4.7x10<sup>31</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Analysis-quality data accumulated by Jan '03
  - CDF: 72.0 pb<sup>-1</sup>
     (57.5 pb-1 with silicon)
  - D0: 30 50 pb<sup>-1</sup>
- Immediate goal for accelerator:
  - Deliver 225 pb<sup>-1</sup> in FY 2003
- Run IIa goal: 2 fb<sup>-1</sup>



June 6th, 2003

Mircea Coca, U of Rochester - CDF

## CDF and D0 Detectors Upgrades



- Tracking:
  - Expanded silicon coverage
  - New drift chamber (COT)
- <sup>®</sup> Extended lepton-ID: |η|>1.0 → 2.0
  - End Plug calorimeter
  - Expanded muon coverage



- New Inner tracking
  - silicon tracker, fiber tracker
  - 2T superconducting solenoid
- Opgraded μ system for better μ -ID

## **Top Production and Decay**

- In proton-antiproton collisions, at 1.96 TeV, top quarks are primarily produced in pairs
- single top production:
  - smaller rate ( $\sigma = 1.5 \text{ pb}$ )
  - large backgrounds
  - not observed yet
- <sup>●</sup> σ<sub>tt</sub> increased by 30% with the CM energy increase from 1.8 →1.96 TeV
- In SM<sup>+</sup>b) ~100% in SM
- Based on the W decay modes →3 experimental signatures:

June 6th, 2003



 Dilepton Very small backgrounds, but very small rate
 Lepton+Jets Manageable backgrounds and good rate
 All Jets Large QCD Background

## **Top Physics in Run II**



Mircea Coca, U of Rochester - CDF

## **Production Cross-Sections**



## $\sigma_{t\bar{t}}$ in the Dilepton Decay Mode



- 2 high-E<sub>T</sub>, isolated leptons (e, μ)
   τ to be included for the future
- CDF: Veto Z-mass window events for ee, μμ
- at least 2 jets with large  $E_T$
- Iarge transverse energy flow

 $\mathsf{H}_{\mathsf{T}} = \Sigma(\mathsf{E}_{\mathsf{T}}^{\mathsf{leptons}} , \mathsf{E}_{\mathsf{T}}^{\mathsf{jets}})$ 

June 6th, 2003

### Backgrounds

- WW/WZ,  $Z/\gamma * \rightarrow \tau \tau$  determined from Monte Carlo (MC)
- W+jets, QCD Heavy Flavor from data



Mircea Coca, U of Rochester - CDF

## Dilepton Channel (ee, eµ, µµ) $\sigma_{t\bar{t}}$



| Source                | ee (events)                       | μμ <b>( events)</b>                | eμ (events)                        |
|-----------------------|-----------------------------------|------------------------------------|------------------------------------|
| L (pb <sup>-1</sup> ) | 48.0                              | 42.6                               | 33.0                               |
| Background            | 1.00 ± 0.49                       | 0.60 ± 0.01                        | $\textbf{0.07} \pm \textbf{ 0.01}$ |
| Signal                | $\textbf{0.25} \pm \textbf{0.02}$ | $\textbf{0.30} \pm \textbf{ 0.04}$ | $\textbf{0.50} \pm \textbf{ 0.01}$ |
| Run II data           | 4                                 | 2                                  | 1                                  |

Run II Preliminary:

$$\sigma_{t\bar{t}} = 29.9^{+21.0}_{-15.7} (stat)^{+14.1}_{-6.1} (sys)^{+3.0}_{-3.0} (lum) pb$$



## eµ+2 jets Top Candidate







June 6th, 2003



## Dilepton Channel $\sigma_{t\bar{t}}$



| Data                  | Source      | ee (events)                       | μμ <b>( events)</b>               | eμ (events)                       |
|-----------------------|-------------|-----------------------------------|-----------------------------------|-----------------------------------|
| sample<br>luminosity: | Background  | $\textbf{0.10} \pm \textbf{0.06}$ | $\textbf{0.09} \pm \textbf{0.05}$ | $\textbf{0.10} \pm \textbf{0.04}$ |
| 72 pb <sup>-1</sup>   | Signal      | $\textbf{0.47} \pm \textbf{0.05}$ | $\textbf{0.59} \pm \textbf{0.07}$ | $\textbf{1.44} \pm \textbf{0.16}$ |
|                       | Run II data | 1                                 | 1                                 | 3                                 |

#### Run II Preliminary:





## **Kinematics of Dilepton Candidates**



## Lepton+Jets $\sigma_{t\bar{t}}$

### **Event Pre-Selection**

- A high P<sub>T</sub> isolated, charged lepton (e, μ), large missing E<sub>T</sub> ( ν undetected)
- Large jet multiplicity (  $\geq 3$  )
- Cosmic ray, electron conversion removal, dilepton veto, Z boson veto.

# Further selections to reduce the background

- e topological:
  - ≥ 4 jets (DØ)

June 6th, 2003

- b jets with Soft Lepton Tag (SLT)
  - ≥ 3 jets, ≥ 1 SLT tag (DØ)
- b jets with displaced vertex (SECVTX)
  - $\geq$  3 jets,  $\geq$  1 b tag (CDF)

Mircea Coca, U of Rochester - CDF



## Lepton+Jets Topological $\sigma_{t\bar{t}}$



#### **Event Pre-Selection**

### Preselect a sample enriched in W events

- an EM object or μ with large
   P<sub>T</sub> and large missing energy
- Veto soft µ's in sample, veto dilepton events

DØ Run II Preliminary



### Backgrounds

- QCD multi-jets evaluated from data vs.N<sub>jets</sub>
  - e+jets: due to fake jets ( $\pi^{o}$  and  $\gamma$ )
  - μ+jets: due to heavy flavor decays
- W multi-jets background in the 4 jet bin estimated using data by Berends scaling law before topological cuts

$$x = \frac{\sigma(W + (n+1)_{jets})}{\sigma(W + n_{jets})}$$

# **Results for Topological Analysis**



### QCD background estimation



### **Topological Selection**

- ≥ 4 jets (|η| < 2.5(μ) or</li>
   |η| < 2.0(e), p<sub>T</sub> >15 GeV)
- Aplanarity >0.065
- H<sub>T</sub>(E<sub>T</sub><sup>jets</sup>) >180 GeV (e)

| Source                | e+jets                           | μ <b>+jets</b> |
|-----------------------|----------------------------------|----------------|
| L (pb <sup>-1</sup> ) | 49.5                             | 40.0           |
| Background            | $\textbf{2.7} \pm \textbf{ 0.6}$ | 2.7 ± 1.1      |
| Signal                | 1.8                              | 2.4            |
| Run II data           | 4                                | 4              |

## Lepton+Jets $\sigma_{t\bar{t}}$ with an SLT tag



#### **Event Selection**

- Preselection as for topological σ<sub>tt</sub>
- softer topological cuts:
  - H<sub>T</sub>(ΣE<sub>T</sub><sup>jets</sup>)> 110 GeV
  - Aplanarity > 0.04
- soft  $\mu$  inside a jet
  - $(b \rightarrow \mu, b \rightarrow c \rightarrow \mu)$

### Backgrounds

QCD and W+jets determined from data

| Source                | e+jets        | μ <b>+jets</b>                  |
|-----------------------|---------------|---------------------------------|
| L (pb <sup>-1</sup> ) | 50            | 40                              |
| Background            | $0.2\pm\ 0.1$ | $\textbf{0.7} \pm \textbf{0.4}$ |
| Expected<br>Signal    | 0.5           | 0.8                             |
| Run II data           | 2             | 0                               |

Lepton+jets channels (SLT + Topological) combined  $\sigma$ 

Run II Preliminary:

$$\sigma_{t\bar{t}} = 5.8^{+4.3}_{-3.4} (stat)^{+4.1}_{-2.6} (sys)^{+0.6}_{-0.6} (lum) pb$$

# Event Selection

Lepton+jets  $\sigma_{t\bar{t}}$  with a SECVTX-tag

- preselect a sample enriched in W events as already mentioned
- ≥ 3 jets with E<sub>T</sub>>15 GeV
- ≥ 1 jet with secondary vertex tag (SECVTX)
- A jet is tagged as b jet if it has at least 2 good tracks and the displacement L<sub>xy</sub> satisfies L<sub>xy</sub>/σ<sub>xy</sub> >3 (typical σ<sub>xy</sub>~150 μm, while L<sub>xy</sub>~3 mm)



## Probability of tagging a tt event:

 $\epsilon$ (event tag) = 45 ± 1 ± 5 %



Secondary

Vertex

# **Backgrounds Estimation**



### Backgrounds

### Mistags:

from # tagged jets with Lxy<0 in inclusive jet data

### W+heavy flavor: from W+jets data, b tag rate and flavor composition

Non W: from data

- WW, WZ, Z→ττ, single top:
   from Monte Carlo simulation
- 1 and 2 jet bins are used as a control sample, the top events are in >= 3 jet bins
- 15 Candidates in ~ 57.5 pb-1



## Lepton+jets $\sigma_{t\bar{t}}$ - SECVTX-tagging







June 6th, 2003 Mircea Coca, U of Rochester - CDF

## **Top Cross-Sections Summary**



$$\sigma_{t\bar{t}} = 8.5^{+4.5}_{-3.6}(stat)^{+6.3}_{-3.5}(sys)^{+0.8}_{-0.8}(lum)pb$$

June 6th, 2003 — Mircea Coca, U of Rochester - CDF

## Top Mass: Lepton+jets



### Event Selection

Select ≥4 jet events, similar to σ<sub>tt</sub> analysis, except no requirement for a jet to be b tagged



### **Reconstruction Method**

- Each event→up to 24 solutions consistent with a top decay:
  - 12 different jet-partons assignments
  - Every combination has two solutions for the v longitudinal momentum
- Impose  $M_t = M_t$ ,  $M(j,j) = M(l,v) = M_W$ 
  - PDG:  $M_W$ ,  $\Gamma_W$ ,  $\Gamma_t$
- 2-C fit applied, chose the event top mass corresponding to the lowest  $\chi^2$  (iff  $\chi^2 < 10$ )
- Parameterized templates of top masses (150, 200) GeV and bkgd
- Continuous likelihood to extract top mass and statistical uncertainty

Mircea Coca, U of Rochester - CDF



June 6th, 2003 -

Mircea Coca, U of Rochester - CDF

# Top Mass using b-tagging



- Identifying a b-jet has a great impact:
  - Smaller combinatorics → improves the mass resolution by ~10 %
  - Reduction in background→
     S/B = 3, increase by 300%
  - Allow to loosen the 4<sup>th</sup> jet selection cuts (40% more events)
- In 57.5 pb <sup>-1</sup> there are 11 candidates with at least one jet tagged as a b-jet
- M<sub>top</sub> with b-tagging is coming...

June 6th, 2003



## Run I Mass: lepton+4 jets events

- Similar with Kondo's method, uses full set of event observables
  - Define a signal event probability
  - Define a background probability  $P_{bkg}(x_i)$  i-th event • Build an event probability  $P(x_i; \alpha) = c_1 P_{ti}(x_i, M_{top}) + c_2 P_{bkg}(x_i)$ where  $\alpha = (M_t, c_1, c_2)$

 $P_{t\bar{t}}(x_i, M_{top})$ 

• Build a likelihood L( $\alpha$ ), minimize –InL( $\alpha$ ) to get c<sub>1</sub>, c<sub>2</sub> and M<sub>t</sub>



LO ME used, 4 jets required exclusively, additional cut on background probability (to improve the sample purity)

June 6th, 2003 — Mircea Coca, U of Rochester - CDF



## **Run I: Preliminary result**



### D0 Run I Statistics [PRD 58(1998), 052001]



Mircea Coca, U of Rochester - CDF

June 6th, 2003

## Summary & Conclusions

# Top physics is extremely rich and has a great potential

- Many top analyses are in progress
  - we re-established the benchmark top quark measurements
  - we are getting close to Run I precision

### Improvements are underway

- Better detector understanding
- Increase the tagging efficiencies of b jets
- Include forward leptons
- We are enthusiastic about the top physics prospects at the Tevatron until first LHC results
- Expect results from larger samples soon
  - Many measurements will supersede those of Run I

# Test the Standard Model to even greater precision

## Top Physics Prospects for 2 fb<sup>-1</sup>



| Measurement                                            | Est. Uncertainty       | Tests                   |
|--------------------------------------------------------|------------------------|-------------------------|
| M <sub>t</sub>                                         | 2-3 GeV/c <sup>2</sup> | Indirect M <sub>H</sub> |
| $\delta \sigma_{tt}^{-}$                               | 7%                     | QCD Couplings           |
| δ[σ <sub>II</sub> /σ <sub>I+i</sub> ]                  | 12%                    | Non-SM Decays           |
| $\delta$ [B(t $\rightarrow$ Wb)/B(t $\rightarrow$ WX)] | 2.8%                   | 67                      |
| $\delta$ [B(t $\rightarrow$ Wb)/B(t $\rightarrow$ Xb)] | 9%                     | 63                      |
| δ[B(t→W <sub>long</sub> )]                             | 5.5%                   | Non-SM Coup.            |
| δ[B(t→W <sub>V+Δ</sub> )]                              | 2.7%                   | W helicity              |
| δ <b>[</b> σ <b>*B(Z'→t t)</b> ]                       | ~90 fb                 | Exotics                 |
| $\delta \sigma_{tbX+btX}$                              | 24%                    | Observe single top      |
| δΓ( <b>t</b> → <b>Wb</b> )                             | 26%                    |                         |
| δV <sub>tb</sub>                                       | 13%                    | CKM Matrix              |

## End of talk : Backup Slides

## **Top Mass Templates**

- Reconstructed top masses from data are compared to parameterized templates of top and background Monte Carlo for masses (150, 200) GeV
- Use a continuous likelihood method to extract top mass and statistical uncertainty
- The bump in the background shape around 130 GeV is due to the kinematic selection of the events



## **Top Dilepton Kinematics**



# Constraint $M_{Higgs}$ with a $M_{top}$ and $M_W$



## Direct Higgs Search



CDF and DØ have a joint effort underway to re-evaluate some key channels in this Higgs reach plot. Results by ~ June.

Single Top

