

## BABAR Future Plans

#### Marcello A. Giorgi



### on behalf of BaBar Collaboration

FPCP 2003-PARIS



# 





Ecole Polytechnique 06/05/03 **FPCP2003** 





## **BaBar Physics Mission**

# New environment: high luminosity asymmetric collider

- 1)Search for CP violation in B meson decays largely predicted by the Standard Model
- 2)Test extensively at this low energy scale the Standard Model by measuring precisely enough quantities to impose constraints on the Standard Model parameters

SP in b sector is

FOUND !

**TRY to open windows on new Physics beyond Standard Model** Rare B decays, Charm study, Tau rare decays

Ecole Polytechnique 06/05/03 **FPCP2003** 





#### BaBar achievements on CP

 $dN \propto exp(-|\Delta t|/\tau_B) (1 \pm D (S sin(\Delta m \Delta t) - C cos(\Delta m \Delta t))) \otimes R$ 

A simultaneous fit to tagged and untagged data gives :

 $\Delta m$  ,sin2 $\beta$  (consistent with previous analysis)

 $|A_{ep}/A_{cp}|$  (consistent with no direct CP violation (4.5%)

(Wrong tag with K due to DCS allowed.  $\Delta\Gamma/\Delta m$ , z,  $\lambda$ , |q/p| left free!)

Measurement of sin2 $\beta$ =0.741 ± 0.067 ± 0.034



cf. Gronau and Rosner, *Phys. Rev. D65,* 093012 (2002)

Ecole Polytechnique 06/05/03 **FPCP2003** 

 $sin2\alpha_{eff} \quad from \quad B^{0} \rightarrow \pi^{+}\pi^{-}$   $S_{\pi\pi} = 0.02 \pm 0.34(stat) \pm 0.05(syst)$   $C_{\pi\pi} = -0.30 \pm 0.25(stat) \pm 0.04(syst)$ 

 $\alpha_{\text{eff}}\text{=}\alpha + \!\! \delta \,$  is a strong phase

With no informations about penguin pollution:

Measure  $S_{\pi\pi}$  and  $C_{\pi\pi}$  from both  $sin\Delta m\Delta t$  and  $cos\Delta m\Delta t$  terms.

• Compare with predicted  $S_{\pi\pi}$  and  $C_{\pi\pi}$  values for given  $\alpha$ ,  $\beta$ , |P/T|, and  $\delta$ .

Assume for instance:

 $\alpha = (97_{-21}^{+30})^{\circ}, \beta = 26^{\circ} |\mathsf{P/T}| = 0.28, -\pi/2 < \delta < \pi/2$ 

Marcello A. Giorgi

BABAR 5

#### Not only B Physics in BABAR !

A new state decaying into  $D_{s}^{+}(1970)$  and  $\pi^{0}$  has been discovered by us and recently confirmed by CLEO!





## Luminosity: Present and Future



Ecole Polytechnique 06/05/03 **FPCP2003** 



#### **PEP-II Upgrade Plans**

|   |                            |                    | <2005              | >2005              |                                      |
|---|----------------------------|--------------------|--------------------|--------------------|--------------------------------------|
|   |                            | Now                | Projected          | Upgrade            |                                      |
|   | LER energy                 | 3.1                | 3.1                | 3.1?               | GeV                                  |
| - | HER energy                 | 9.0                | 9.0                | 9.0?               | GeV                                  |
|   | LER current                | 1.8                | 2.4                | 3.3                | А                                    |
|   | HER current                | 1.0                | 1.4                | 1.5                | А                                    |
|   | $\beta_{\rm v}^{*}$        | 12.5               | 9.0                | 5.0                | mm                                   |
|   | $\beta_x^*$                | 35                 | 35                 | 35                 | cm                                   |
|   | X emittance                | 50                 | 50                 | 50                 | nm-rad                               |
|   | Estimated $\sigma_{y}^{*}$ | 5                  | 4.3                | 3                  | μm                                   |
|   | Bunch spacing              | 1.89               | 1.89               | 1.26               | m                                    |
|   | Number of bunches          | 921                | 1130               | 1700               |                                      |
| - | Collision angle            | head-on            | head-on            | ±3.25              | mrads                                |
|   | Beam pipe radius           | 2.5                | 2.5                | 2.5                | cm                                   |
|   | Luminosity                 | 5×10 <sup>33</sup> | 8×10 <sup>33</sup> | 2×10 <sup>34</sup> | $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ |





## (>FY03) What next for Sin $2\beta$

We can improve the expt. error on  $\sin 2\beta$ with luminosity in time dependent asymmetry for channels as:  $b \rightarrow ccs O(\lambda^2)$  (golden mode as  $J/\psi Ks$ ) or

b→ccd  $O(\lambda^3)$  (such as D <sup>(\*)+</sup> D<sup>(\*)-</sup>),

where the leading term gives sin2  $\beta$ 



10

Ecole Polytechnique 06/05/03 **FPCP2003** 

### (>FY03) What next for Sin $2\beta$

Pure penguin process  $B \longrightarrow \Phi K_s$ 

The present value with 80 /fb is:

 $S = \sin 2\beta = -0.19_{-0.50} + 0.52 \text{ stat.} \pm 0.09 \text{ syst.}$ 

But also  $B \longrightarrow \eta' K$  and  $B \longrightarrow K K K$ 

## How to go from $\alpha_{eff}$ to $\alpha$ ? $\pi\pi$ channel with isospin analysis? $\rho\pi$ with Dalitz plot analysis?

Ecole Polytechnique 06/05/03 **FPCP2003** 

Marcello A. Giorgi



NEW PHYSICS ?

New guanta in the loop?/



#### Some comments about comparison with Hadron machine expts.

| CKM parameters                                                                      | BABAR/Belle                  | BTeV/LHC-B        |
|-------------------------------------------------------------------------------------|------------------------------|-------------------|
|                                                                                     | 2 ab-1                       | 10 <sup>7</sup> s |
| Sin2β(charmonium)                                                                   | 0.015stat/0.018syst          | 0.025/0.014       |
| Sin <sub>2</sub> $\beta$ (penguins b $\rightarrow$ sss)                             | 0.10 stat                    |                   |
| in 2S $\alpha_{eff}(B^0 \rightarrow \pi + \pi -)$                                   | 0.06 stat                    | 0.024/0.056       |
| $\alpha_{eff}$ - $\alpha$ ( $B^0 	o \pi^0 \pi^0$ )                                  | <10°                         |                   |
| Sin( $2\beta - \gamma$ ) (B <sup>0</sup> $\rightarrow$ D <sup>*</sup> $\pi^0 \pi^0$ | ) 0.15                       |                   |
| γ <b>(B →DK)</b>                                                                    | 7°                           | <10°/<19°         |
| Vub  1.45                                                                           | %+ Th. Unc.(now at best 10%) |                   |

Of course Bs mixing and decay can be studied well at hadron machines ( $\gamma$  and a lot of good physics from Bs see talk of R.Fleisher at this conference.

Ecole Polytechnique 06/05/03 **FPCP2003** 



Rare decays - Summary

| Channel              | BF                               | BTeV/LHC-B (10 <sup>7</sup> s) | BABAR/BELLE (2 ab <sup>-1</sup> )                            |
|----------------------|----------------------------------|--------------------------------|--------------------------------------------------------------|
| b→sγ                 | 3.3±0.3 10-4                     |                                | 44.0K<br>6.8K(Btagged)                                       |
| <b>Β→Κ*</b> γ        | 5 <b>10</b> -5                   | 25K                            | 24.0K                                                        |
| <b>Β</b> → ρ (ω)γ    | 2 <b>10</b> -6                   |                                | 1.2K                                                         |
| b→sµ+µ–<br>b→se+e-   | 6.0 ±1.5 10 <sup>-6</sup>        | 3.6K                           | 1.2K<br>1.4K <i>Asymmetries!</i>                             |
| B→K*µ+µ–<br>B→K*e+e- | 2.0 ±1 10 <sup>-6</sup>          | 2.2K/4.5K                      | 0.5K<br>0.6K                                                 |
| b→svv                | 4.1 ±0.9 10 <sup>-5</sup>        |                                | 30 Rates                                                     |
| <b>BK*</b> ∨∨        | 5.0 <b>10</b> -6                 |                                | 6 reconstructed                                              |
| Β→τν<br>Β→μν         | 5 <b>10</b> -5<br>5 <b>10</b> -7 |                                | 70<br>35<br>B on the other<br>side are used<br>The so called |
| τ →μγ                |                                  |                                | Limit< 10 <sup>-8</sup> B beam option                        |

#### Bfactory and hadron machine measurements are complementary!

Ecole Polytechnique 06/05/03 **FPCP2003** 



#### 

BABAR is a VERY good detector: very difficult to improve it!! (On IFR barrel is the only major intervention needed)

SVT is 98% efficient. No degradation due to irradiation has been observed so far



SVT so far tested for rad hardness up to 4 Mrad (OK!) rad tests are going on.

Partial SVT replacement is considered by 2005. Almost 50% of modules built as spare.

BABAR 15

Ecole Polytechnique 06/05/03 **FPCP2003** 

### **IFR Barrel Upgrade**

Many RPCs die since 1999. Fraction effectively dead is now almost 40%

Muon selectors losing efficiency

mu Efficiency for p>1.5 GeV/c Decision taken to increase the thickness of the absorber and to replace the bakelite RPC with a more robust detector (Limited StreamerTube).

**INTALLATION 2004 & 2005** 



#### Summary

## FY2003-

Decision taken to rebuild the IFR Barrel with a new technology (LST)

Preliminary measurements of pure penguin processes for sin2 $\beta$ , measurements of Vub, B->DK, B-> $\rho\pi$ .

FUTURE - In 2005 install IFR Barrel and Spare modules of SVT, to replace the heavily irradiated on horizontal plane. Approach the precision measurement with 0.5/ab of integrated

'luminosity . Towards more than 1.0/ab explore possible openings for new physics.

Study of CP asymmetries but also rare decays in b, c and tau sectors.



Ecole Polytechnique 06/05/03 **FPCP2003** 



## BACKUP SLIDES

Ecole Polytechnique 06/05/03 **FPCP2003** 



#### Some comments about comparison with Hadron machine expts.

|            | Lumi(10 <sup>33</sup> ) | $\sigma_{bb}$ (nb) | bb(10 <sup>7</sup> /year) | $\sigma_{bb} / \sigma_{qq}$ |
|------------|-------------------------|--------------------|---------------------------|-----------------------------|
| Bfactories | 10                      | 1.1                | 11                        | 3 10-1                      |
| BTeV       | 0.2                     | 100000             | 20000                     | 1 10-3                      |
| LHC-B      | 0.15                    | 5 105              | 75000                     | <b>5 10</b> -3              |

The extraction of  $\alpha$  from  $\alpha$   $_{\text{effective}}$  is possible using Bfactory data.

 $\pi^0$  reconstruction is an essential ingredient! Bfactory allow the  $\rho\pi$  channel analysis ( $\pi^0$  are involved!)

Ecole Polytechnique 06/05/03 **FPCP2003** 



#### Time dependent rate, flavor mixing and CP, T, CPT



Ecole Polytechnique 06/05/03 **FPCP2003** 





 $sin2\alpha_{eff}$ 

from  $B^0 \rightarrow \pi^+\pi^-$ 

 $\alpha = (97_{-21}^{+30})^{\circ}, \beta = 26^{\circ}$ The and Penguin amplitudes  $\pi/2$  so the tothis channel

- $\alpha_{eff}$ =  $\alpha + \delta$   $\delta$  is a strong phase In absence of informations about penguin pollution:
- Measure  $S_{\pi\pi}$  and  $C_{\pi\pi}$  from both  $sin\Delta m\Delta t$  and  $cos\Delta m\Delta t$  terms.
- Compare with predicted  $S_{\pi\pi}$  and  $C_{\pi\pi}$  values for given  $\alpha$ ,  $\beta$ , |P/T|, and  $\delta$ . Assume for instance:

 $\alpha = (97 + \frac{30}{-21})^{\circ}$  $\beta = 26^{\circ}$ |P / T| = 0.28 $- \frac{\pi}{2} < \delta < \frac{\pi}{2}$ 



#### cf. Gronau and Rosner, Phys. Rev. D65, 093012 (2002)

Ecole Polytechnique 06/05/03 **FPCP2003** 

Marcello A. Giorgi

BABAR 23

#### BACKUP





## PEPII - "adiabatic" scenario



Ecole Polytechnique 06/05/03 **FPCP2003**