The BTeV Experiment: Physics and Detector

FPCP 2003 K. Honscheid Chio State University

More details can be found at

www-physics.mps.ohio-state.edu/~klaus/research/cipanp.pdf and the BTeV web site at fnal.gov

B Physics Today

CKM Picture okay

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CP Violation observed
 sin(2β) = 0.734 +/- 0.054
 No conflict with SM

B Physics at Hadron Colliders

Tevatron

Energy 2 TeV
 b cross section ~100 μb
 c cross section ~1000 μb
 b fraction 2x10⁻³
 Inst. Luminosity 2x10³²
 Bunch spacing 132 ns (396 ns)
 Int./crossing <2> (<6>)
 Luminous region 30 cm

LHC 14 TeV ~500 μb ~3500 μb 6x10⁻³ >2x10³² 25 ns <1> 5.3 cm

⇒ Large cross sections
 ⇒ Triggering is an issue
 ⇒ All b-hadrons produced (B, B_s, B_c, b-baryons)

Detector Requirements

Trigger, trigger, trigger
Vertex, decay distance
Momentum
PID
Neutrals (γ, π⁰)

FPCP 2003 K. Honscheic Ohio State

From F. Teubert

Forward vs. Central Geometry

Multi-purpose experiments require large solid angle coverage. Central Geometry (CDF, D0, Atlas, CMS) Dedicated B experiments can take advantage of Forward geometry (BTeV, LHCb)

Pixel Vertex Detector

Reasons for Pixel Detector:

- Superior signal to noise
- Excellent spatial resolution -- 5-10 microns depending on angle, etc
- Very Low occupancy
- Very fast
- Radiation hard

Special features:

- It is used directly in the L1 trigger
- Pulse height is measured on every channel with a 3 bit FADC
- It is inside a dipole and gives a crude standalone momentum

The Pixel Detector II

Simulated B Bbar, Pixel Vertex Detector

Level 1 vertex trigger architecture

L1 vertex trigger algorithm

• Generate Level-1 accept if $\ge\!\!2$ "detached" tracks in the BTeV pixel detector satisfy:

Efficiencies and Tagging

 For a requirement of at least 2 tracks detached by more than 6σ, we trigger on only 1% of the beam crossings and achieve the following trigger efficiencies for these states (<2> int. per crossing):

Decay	efficiency(%)	Decay efficie	ency(%)
$B \rightarrow \pi^+ \pi^-$	63	$B^{o} \rightarrow K^{+} \pi^{-}$	63
$B_s \rightarrow D_s K$	74	$B^{o} \rightarrow J/\psi K_{s}$	50
$B^- \rightarrow D^{\circ}K^-$	70	$B_s \rightarrow J/\psi K^*$	68
$B^- \rightarrow K_s \pi^-$	27	$B^{o} \rightarrow K^{*} \gamma$	40

The Physics Goals

There is New Physics out there:

- Baryon Asymmetry of Universe & by Dark Matter
- Hierarchy problem
- Plethora of fundamental parameters
- .

B Experiments at Hadron Colliders are well positioned to:

- Perform precision measurements of CKM Elements with small model dependence.
- Search for New Physics via CP phases
- Search for New Physics via Rare Decays
- Help interpret new results found elsewhere (LHC, neutrinos)
- Complete a broad program in heavy flavor physics
 - Weak decay processes, *B*'s, polarization, Dalitz plots, QCD...
 - Semileptonic decays including Λ_b
 - b & c quark Production
 - Structure: B(s) spetroscopy, b-baryon states
 - B_c decays

Importance of Particle Identification

Measuring α Using B^o $\rightarrow \rho\pi \rightarrow \pi^+\pi^-\pi^o$

A Dalitz Plot analysis gives
 both sin(2α) and cos(2α)
 (Snyder & Quinn)

Measured branching ratios are:

- **a** $B(B^- \to \rho^0 \pi^-) = \sim 10^{-5}$
- $B(B^{\circ} \rightarrow \rho^{-} \pi^{+} + \rho^{+} \pi^{-}) = \sim 3 \times 10^{-5}$
- B(B°→ $\rho^{o}\pi^{o}$) <0.5x10⁻⁵
- Snyder & Quinn showed that 1000-2000 tagged events are sufficient
- Not easy to measure
 π⁰ reconstruction
- Not easy to analyze
 - 9 parameter likelihood fit

Dalitz Plot for $B^{\circ} \rightarrow \rho \pi$

Yields for B^o $\rightarrow \rho \pi$

Based 9.9x10⁶ background events

Our Estimate of Accuracy on α

• Geant simulation of $B^{\circ} \rightarrow \rho \pi$, (for 1.4x10⁷ s)

Electromagnetic Calorimeter

The main challenges include

- Can the detector survive the high radiation environment ?
- Can the detector handle the rate and occupancy ?
- Can the detector achieve adequate angle and energy resolution ?

BTeV will have a high resolution PbWO₄ calorimeter

- Developed by CMS for use at the LHC
- Large granularity Block size 2.7 x 2.7 x 22 cm³ (25 X_o)
 - ~11000 crystals
- Photomultiplier readout (no magnetic field
- Pre-amp based on QIE chip (KTeV)
- Energy resolution Stochastic term 1.8% Constant term 0.55%
- Position resolution

 $\sigma_x = 3526 \ \mu \text{m} \ / \sqrt{E} \oplus 217 \ \mu \text{m}$

Electromagnetic Calorimeter Tests

Block from China's Shanghai Institute

Resolution (energy and position) close to expectations

• This system can achieve CLEO/BaBar/BELLE-like performance in a hadron Collider environment!

Rare b Decays

Search for New Physics in Loop diagrams

- New fermion like objects in addition to t, c or u
- New Gauge-like objects in addition to W, Z or g

Inclusive Rare Decays including

- b→sγ
- $b {\rightarrow} d\gamma$
- $b \rightarrow s \ell^+ \ell^-$

Exclusive Rare Decays such as

- $B \rightarrow \rho \gamma, K^* \gamma$
- B→K*ℓ+ℓ-Dalitz plot & polarization

 $B^{0} \rightarrow$

b

t,c,u

 $\rho^+ \rho^-$

Polarization in B^o \rightarrow **K***^o $\mu^+\mu^-$

BTeV data compared to Burdman et al calculation

 Dilepton invariant mass distributions, forward-backward asymmetry discriminate among the SM and various supersymmetric theories. (Ali, Lunghi, Greub & Hiller, hep-ph/0112300)

One year for $K^*\ell^+\ell^-$, enough to determine if New Physics is present

8

6

s [GeV²]

2

Muon System

- Provides Muon ID and Trigger
 - Trigger for interesting physics states
 - Check/debug pixel trigger
- fine-grained tracking + toroid
 - Stand-alone mom./mass trig.
 - Momentum "confirmation"
- Basic building block: Proportional tube "Planks"

Top View

Summary

- Heavy quark physics at hadron colliders provides a unique opportunity to
 - measure fundamental parameters of the Standard Model with no or only small model dependence
 - discover new physics in CP violating amplitudes or rare decays.
 - interpret new phenomena found elsewhere (e.g. LHC)

Some scenarios are clear others will be a surprise

- This program requires a general purpose detector like BTeV with
 - an efficient, unbiased trigger and a high performance DAQ
 - a superb charged particle tracking system
 - good particle identification
 - excellent photon detection

Additional Transparencies

Physics Reach (CKM) in 10⁷ s

Reaction	ℬ(B) (x10 ⁻⁶)	# of Events	S/B	Parameter	Error or (Value)
$B_s \rightarrow D_s K^-$	300	7500	7	γ - 2χ	8º
$B_s \rightarrow D_s \pi^-$	3000	59,000	3	X _s	(75)
$B^{o} \rightarrow J/\psi K_{S} J/\psi \rightarrow \ell^{+} \ell^{-}$	445	168,000	10	sin(2β)	0.017
B ^o →J/ψ K ^o , K ^o → $\pi \ell \nu$	7	250	2.3	cos(2 β)	~0.5
B⁻→D⁰ (K⁺π⁻) K⁻	0.17	170	1		
B ⁻ →D ^o (K ⁺ K ⁻) K ⁻	1.1	1,000	>10	γ	13º
B _s →J/ψ η,	330	2,800	15		
B _s →J/ψ η′	670	9,800	30	sin(2χ)	0.024
$B^{o} \rightarrow \rho^{+} \pi^{-}$	28	5,400	4.1		
B°→ρ°π°	5	780	0.3	α	~4º
Reaction	<i>B</i> (В) (х10 ⁻⁶)	# of Events	S/B	Parameter	Error
Β ⁻ →K _S π ⁻	12.1	4,600	1		<40 +
B°→K ⁺ π ⁻	18.8	62,100	20	γ	Theory err.
$B^{o} \rightarrow \pi^{+}\pi^{-}$	4.5	14,600	3	Asymmetry	0.030
$B^{o} \rightarrow K^{+} K^{-}$	17	18,900	6.6	Asymmetry	0.020

A simplified trigger comparison

	LHCb	BTeV
High p_{τ} , high E_{τ}	10* MHz	
Impact parameter	1 MHz	7.6 MHz
Decay topology		80 kHz
Physics algorithms	40 kHz	
Totape	200 Hz	4 kHz

* Rate of events with visible collisions

	ATLAS	CMS
Muon trigger	40 MHz	40 MHz
$J/\psi \rightarrow l^{+}l^{-}, D_{s} \rightarrow \phi \pi, B \rightarrow \pi^{+}\pi^{-}$	23kHz	
Physics algorithms	1 kHz	4 kHz
To tape	10 Hz	10 Hz

K. Honscheid **Ohio State**

From N. Harnew

Pixel Test Beam Results

Pixel Resolution (FPIX0)

Analog output of pixel amplifier before and after 33 Mrad irradiation. 0.25µ CMOS design verified radiation hard with both γ and protons.

Forward Tracker

FPCP 2003 K. Honscheid Ohio State Predicted performance -Momentum resolution is better than 1% over full momentum and angle range

Prototype Straw tracker being constructed for FNAL beam test summer/fall 2002

Drawing Of forward Microstrip tracker

HPD Schematic for BTeV RICH

Prop Tube Planks

Basic Building Block: Proportional Tube "Planks"

- 3/8" diameter Stainless steel tubes (0.01" walls)
- "picket fence" design
- 30 μ (diameter) gold-plated tungsten wire
- Manifolds are brass soldered to tubes (RF sheilding important!)
- Front-end electronics: use Penn ASDQ chips, modified CDF COT card
- Try "D0 fast gas" 88% Ar -10% CF₄ - CO₂ or 50% Ar -50% Eth.

Top View

Plank Cosmic Ray Tests

Cosmic Ray Test Stand

BTeV Data Acquisition Architecture

PbWO₄ Calorimeter Properties

PropertyValueDensity(gm/cm²)8.28Radiation Length(cm)0.89Interaction Length(cm)22.4Light Decay time(ns)5(39%)(3components)15(60%)

Refractive index2.30Max of light emission440nmTemperature-2Coefficient (%/°C)-2Light output/Na(Tl)(%)1.3Light output(pe/MeV)10

Value Property Transverse block size 2.7cm X 2.7 cm **Block** Length 22 cm **Radiation Length** 25 5(39%) Front end Electronics PMT Inner dimension +/-9.8cm (X,Y) 100(1%) **Energy Resolution:** 1.8% (2.3%) Stochastic term Constant term 0.55% $\sigma_r = 3526 \ \mu \text{m} \ / \sqrt{E}$ **Spatial Resolution:** $\oplus 217 \mu m$ **Outer Radius** 140 cm--215 cm \$ driven **Total Blocks/arm** 11,500