

The LHCb experiment: status and physics program

Clara Matteuzzi

On behalf of the LHCb collaboration

Università Milano-Bicocca and I.N.F.N. Milano

FPCP Paris, 2-6 June 2003

LHCb is a forward one-arm spectrometer dedicated mainly to study CP violation and rare B decays at LHC

Check consistency of the Standard Model : precision measurements of angles and sides of the CKM triangle

Search for New Physics : rare and SM forbidden decays of b particles

The triangle

Consistency of the Standard Model (assumed to determine the vertex) and the direct measurement of **sin2**^β from B-factories

$$\begin{aligned} |V_{cb}| \text{ from } B \to H_c X \text{ decays} \to A \\ |V_{ub}| \text{ from } B \to H_u \ell v \text{ decays} \to \rho^2 + \eta^2 \\ B_d - B_d \text{ mixing, } \Delta m_d \to (1-\rho)^2 + \eta^2 \end{aligned}$$

Clara Matteuzzi

Clara Matteuzzi

b - physics at LHC

Crucial **tasks** of a detector:

🛧 triggering

particle ID identification of exclusive final states $(K/\pi/p/e/\mu)$ tagging

background rejection

 \star decay time resolution

The LHCb Vertex Locator

low occupancy
Si area : 0.32 m²
#X_o : 0.18
σ_t : 43 fs
channels : 172 k

$$\sigma_{IP} = 17\,\mu m + \frac{32\,\mu m}{p_T}$$

Tracking performance

The **RICH** of **LHCb**

- 2 detectors with **3** radiators Photo Detectors 300 mrad (aerogel, C_4F_{10} , CF_4) cover momentum range: 300 mrad 2 - 100 GeV 120 mrad Sphericat Aerogel Mirror C4F10 Beam pipe K $-\pi$ separation Track VELO exit window Flat mirror <u>∆ ס (</u>ת-K) 14 Plane 12 Mirror 10 8 **RICH 1** 11 12 m 6 RICH 2 4 (25-300 mrad) (15-120 mrad) 2 5 cm aerogel 0 10 100 **100** m³ CF₄ **4** m³ C₄ F_{10} Momentum [GeV/c] Clara Matteuzzi
 - FPCP, Paris 2-6 june 2003

 CF_4 gas

Beam pipe

Spherical mi

Photodetecto

housing

Physics with Particle Identification

 $B_s \implies D_s K$

Clara Matteuzzi

LHCb L1 trigger

 trigger robust and flexible
hadron trigger fundamental for hadronic final states
trigger efficiencies L0xL1 20 % - 70%

Simulated bb events

MC Pythia 6.2 tuned on CDF and UA5 data Multiple pp interactions and spill-over effects included Complete description of material from TDRs Individual detector responses tuned on test beam results Complete pattern recognition in reconstruction

Event yield in LHCb

1 year = 2 fb ⁻¹ (L = $2x10^{32}$ cm⁻²s⁻¹)

Yield calculated taking into account :

- Geometrical acceptance, detection efficiency, material
- L0 and L1trigger efficiencies (including pile-up veto)
- Reconstruction efficiencies (tracking, calorimeters, PID)
- Selection cuts efficiency to identify the final state

Channel	Yield
$B^0 \rightarrow \pi^+\pi^-$	27 k
$B^0 \rightarrow K^+ \pi^-$	115 k
$B_s \rightarrow K^+ K^-$	35 k
$B_s \rightarrow D_s^- \pi^+$	72 k
$B_s \rightarrow D_s^-K^+$	8 k
$B_s \rightarrow J/\psi \ (\mu^- \mu^+) \phi$	109 k
$B_s \rightarrow J/\psi \ (e^-e^+)\phi$	19 k
$B^0 \rightarrow J/\psi(\mu^-\mu^+) K_S$	119 k
$B^0 \rightarrow K^{0*} \gamma$	20 k

more background simulated events are necessary to optimize selection criteria vs background rejection

Clara Matteuzzi

Measuring Y

4 ways of determining γ

Time dependent analysis of $\mathbf{B}_{s} \rightarrow \mathbf{D}^{+}{}_{s}\mathbf{K}^{-}$ (tagged) Rate difference between $\mathbf{B}^{-} \rightarrow \mathbf{D}^{0}\mathbf{K}^{-}$ and $\mathbf{B}^{+} \rightarrow \mathbf{D}^{0}\mathbf{K}^{+}$ (untagged) **model independent**

Rate measurements in K^oπ[±] and K[±]π[∓] (Fleisher-Mannel) or rates in K^oπ[±] and asymmetry in K[±]π^o (Neubert-Rosner, Beneke et al).
Measure time dependent asymmetries in (Fleischer, Martinelli)
B^o→π⁺π⁻ and B_s→K⁺K⁻ symmetric d ⇔s

dependence on hadronic assumptions in the different calculations

Measuring with $\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}^{\pm} \mathbf{K}^{+}$

 Δm_s up to ~ 60 ps⁻¹

- \rightarrow hadronic trigger, K/ π separation, proper time resolution are fundamental
- > gets $\gamma 2\delta\gamma$ (needs $2\delta\gamma$ from B_s $\rightarrow J/\Psi \Phi$)
- In one year of data (2 fb⁻¹) **8k** D K and **72k** D π

expected sensitivity:

σ(γ) ~ 10° for Δm_s = 20 ps⁻¹ $σ(γ) ~ 12^{0}$ for $\Delta m_s = 30 \text{ ps}^{-1}$

depending on amplitudes, strong phases, γ , Δm_s , $\Delta \Gamma/\Gamma$

Clara Matteuzzi

Study of $B^0_{s} \rightarrow J/\psi \phi \longrightarrow (\mu \mu K^+K^-)$

- > CP asymmetries determine $-2\delta\gamma$ (very small in Standard Model but sensitive to New Physics). And also Δm_s and $\Delta \Gamma_s$
- > Must be separated from prompt J/ Ψ production (possible with 0.1 < B/S < 0.4 at 90% CL)

Study of $B^0_{s} \rightarrow J/\psi \phi \longrightarrow (\mu \mu K^+K^-)$

Needs angular analysis to disantangle CP-odd and CP-even states

> In one year of data (2 fb⁻¹) 109k $J/\Psi \Phi$ and 19k $J/\Psi \Phi$ (µµ) (ee)

expected sensitivity:

 σ (2δγ) ~ 2⁰ for Δm_s = 20 ps⁻¹

also $B^0_s \to \Phi \Phi$ $B^0_s \to J/\Psi \eta$ $B^0_s \to \eta_c \Phi$ probe $\delta \gamma$ (under study in LHCb)

NFN Mittele Nacionale di Finica Nucleare Clara Matteuzzi

- > Relies on hadronic trigger, excellent K/π separation, mass resolution
- **Select B candidates with p_T, IP/\sigma, L, mass cuts**
- Combinatorial bb bckgr. can be rejected (S/B > 1)

These numbers are being updated, and more channels studied, in the re-optimization of the LHCb detector to be concluded in September 2003

1 year data
$$\longrightarrow$$
 2 fb⁻¹

	Channel	Yield	Precision	
β	$B_d \rightarrow J/\psi K_s$	119 k	σ(β) ≈ 0.6°	
- •	$B_s \rightarrow D_s K$	8 k	σ(γ) ≈10°	
*	$B_d \rightarrow \pi \pi, B_s \rightarrow KK$	27 k, 35 k	σ(γ) ≈ 3 ^o	
Ø	$B_d \rightarrow \pi^+ \pi^-$	27 k	$\sigma(\alpha) \approx 5^{\circ} - 10^{\circ}$	
2δγ	$B_s \rightarrow J/\psi \phi$	128 k	$\sigma(2\delta\gamma) \approx 2^{\circ}$	
$ V_{td}/V_{ts} $	$B_s \rightarrow D_s \pi$	72 k	Δm_s up to 58 ps ⁻¹	
rare decays	$B_d \rightarrow K^* \gamma$	20 k		

Conclusions

The present of b-physics is already very rich
B-factories (BaBar, Belle, CLEO), Tevatron,
+ (LEP, SLC)

The future :

Next generations of **dedicated** experiments at hadron machines will have order of 10^{12} **bb** pairs per year with

dedicated trigger and particle ID

LHCb is a unique opportunity to measure precisely angles and sides of the CP triangle and to understand the origin of **CP violation** in the SM and beyond

LHCb installation starts in 2005

data taking starts in 2007

Back-up slides

LHCb TRIGGER

channel	L0 (%)				L1(%)	Total	
	μ	e	h	γ	all		(%)
${\rm B^0}_{\rm s} \rightarrow {\rm J/\psi}(\mu\mu) \phi$	90	5	30	3	93	73	68
$B^0_{s} \rightarrow J/\psi(ee) \phi$	7	36	24	4	52	43	23
$B^0_{s} \rightarrow D_{s} K$	8	5	37	2	44	65	29
${\rm B^0}_{\rm d} \rightarrow {\rm K}^* \gamma$	6	28	30	47	82	33	27
${\rm B^0}_d o \pi^+ \pi^-$	7	9	55	3	61	51	31

