The **LHCb** experiment: status and physics program

Clara Matteuzzi
On behalf of the LHCb collaboration
Università Milano-Bicocca and I.N.F.N. Milano

FPCP Paris, 2-6 June 2003
The LHCb experiment

LHCb is a forward one-arm spectrometer dedicated mainly to study CP violation and rare B decays at LHC

Check consistency of the **Standard Model**: precision measurements of angles and sides of the CKM triangle

Search for **New Physics**: rare and SM forbidden decays of b particles
The triangle

Consistency of the Standard Model (assumed to determine the vertex) and the direct measurement of $\sin 2\beta$ from B-factories

$|V_{cb}|$ from $B \rightarrow H_c X$ decays $\rightarrow A$

$|V_{ub}|$ from $B \rightarrow H_u \ell \nu$ decays $\rightarrow \rho^2 + \eta^2$

B_d-B_d mixing, $\Delta m_d \rightarrow (1-\rho)^2 + \eta^2$

Clara Matteuzzi

FPCP, Paris 2-6 June 2003
\[\Delta b = 1 : \text{Decays through penguin} \]

\[\Delta b = 2 : \text{Oscillations through box} \]

\[\Delta b = 2 : \text{Oscillations through tree} \]

The Standard Model tree process not affected.
b at the LHC machine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{cm}</td>
<td>14 TeV</td>
</tr>
<tr>
<td>$L (cm^{-2} s^{-1})$</td>
<td>2×10^{32} (10-100)</td>
</tr>
<tr>
<td>$\sigma (bb)$</td>
<td>500 μb</td>
</tr>
<tr>
<td>$\sigma (inel)$</td>
<td>80 mb</td>
</tr>
<tr>
<td>$#bb$-pairs</td>
<td>10^{12} /year</td>
</tr>
<tr>
<td>b fraction</td>
<td>5×10^{-3}</td>
</tr>
<tr>
<td>f</td>
<td>40 MHz</td>
</tr>
<tr>
<td>t_{bunch}</td>
<td>25 ns</td>
</tr>
<tr>
<td>z primary</td>
<td>5 cm</td>
</tr>
<tr>
<td>inter/xing</td>
<td>0.4 (2-20)</td>
</tr>
</tbody>
</table>

Luminosity locally controlled

All types of b-hadrons B_u, B_d, B_s, B_c, Λ_b, Σ_b, Ξ_b, ...

with large boost of the hadron

Clara Matteuzzi

FPCP, Paris 2-6 June 2003
Crucial **tasks** of a detector:

- **triggering**
- **particle ID** identification of exclusive final states (K/π/p/e/µ) **tagging**
- **background rejection**
- **decay time resolution**
The LHCb detector layout

Aperture

\[1.5 < |\eta| < 3.5 \]

Aperture ~ 15 – 300 (250) mrad

Ecal

- Shashlik type (66 layers 2mm Pb/4mm scintillator)
- Transverse granularity 4, 6, 12 cm cells
- ~6000 channels, 25 \(\lambda_0 \)
- \(\sigma/E \sim 10%/\sqrt{E} \)

Hcal

- 1468 cells, 5.6 \(\lambda_0 \)
- \(\sigma/E \sim 75%/\sqrt{E} \)

Dipole magnet

- Warm trapezoidal coils
- Pole shape following the acceptance
- \(\int B dl = 4 Tm \)
- \(P = 4.2 MW \)

Inner Tracker

- 3 stations 4 layers each
- 320 \(\mu m \) thin silicon
- 198 \(\mu m \) readout pitch
- 130k readout channels

Outer Tracker

- 3 stations with 4 double layers
- 5 mm straws tubes
- Fast drift gas (signal within 50 ns)
- 75% Ar 15% CF4 10% CO2
- 50k readout channels

Vertex Detector

- \(40\% \ X_0 \), 12%
The LHCb Vertex Locator

- low occupancy
- Si area: 0.32 m²
- $#X_o: 0.18$
- $\sigma_t: 43$ fs
- # channels: 172 k

$$\sigma_{IP} = 17 \mu m + \frac{32 \mu m}{p_T}$$

21 stations
Tracking performance

Average efficiency = **92 %**
Efficiency for p>5GeV >95%
Ghost rate p_T>0.5 GeV ~ 7%.

Momentum resolution:
\[\Delta p/p = 0.38\% \]
\[<N> = 27 \text{ tracks/event} \]

Mass resolution
\((\sim 13 \text{ MeV})\)
for the decay channel
\[B_s \rightarrow D_s \pi^+ \rightarrow K\bar{K}\pi \]

Proper time resolution (42 fs)
The **RICH** of **LHCb**

2 detectors with 3 radiators (aerogel, C$_4$F$_{10}$, CF$_4$) cover momentum range: 2 - 100 GeV

K–π separation

Clara Matteuzzi
Physics with Particle Identification

$B_s \rightarrow D_s K$

- **Purity = 7.0%**
- **Efficiency = 66%**

$B_s \rightarrow K^+ K^-$

- **Purity = 13%**
- **Efficiency = 84%**
LHCb Trigger

subdetectors

Calorimeters
Muon
Pile-up veto

Level-0

VELO
Trigger Tracker
Level-0

all the detector

Higher Levels

data log

Level-1

40 MHz
\(p_T \) of e, \(\mu \), h, \(\gamma \)

1 MHz
Impact parameter
Rough \(p \) estimate
(\(~20\%\))

40 KHz
final state reconstruction

200 Hz
LHCb L1 trigger

Performance in B decays

- trigger robust and flexible
- hadron trigger fundamental for hadronic final states
- trigger efficiencies L0 x L1 20 % - 70%

Clara Matteuzzi

FPCP, Paris 2-6 June 2003
Simulated bb events

MC Pythia 6.2 tuned on CDF and UA5 data
Multiple pp interactions and spill-over effects included
Complete description of material from TDRs
Individual detector responses tuned on test beam results
Complete pattern recognition in reconstruction
Yield calculated taking into account:

- Geometrical acceptance, detection efficiency, material
- L0 and L1 trigger efficiencies (including pile-up veto)
- Reconstruction efficiencies (tracking, calorimeters, PID)
- Selection cuts efficiency to identify the final state

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow \pi^+ \pi^-$</td>
<td>27 k</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^+ \pi^-$</td>
<td>115 k</td>
</tr>
<tr>
<td>$B_s \rightarrow K^+ K^-$</td>
<td>35 k</td>
</tr>
<tr>
<td>$B_s \rightarrow D_s^- \pi^+$</td>
<td>72 k</td>
</tr>
<tr>
<td>$B_s \rightarrow D_s^- K^+$</td>
<td>8 k</td>
</tr>
<tr>
<td>$B_s \rightarrow J/\psi (\mu^- \mu^+) \phi$</td>
<td>109 k</td>
</tr>
<tr>
<td>$B_s \rightarrow J/\psi (e^- e^+) \phi$</td>
<td>19 k</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi (\mu^- \mu^+) K_S$</td>
<td>119 k</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^{0*} \gamma$</td>
<td>20 k</td>
</tr>
</tbody>
</table>

More background simulated events are necessary to optimize selection criteria vs background rejection.
4 ways of determining γ

- Time dependent analysis of $B_s \rightarrow D^+_s K^-$ (tagged)
- Rate difference between $B^- \rightarrow D^0 K^-$ and $B^+ \rightarrow D^0 K^+$ (untagged)
 model independent
- Rate measurements in $K^0 \pi^\pm$ and $K^\pm \pi^\mp$ (Fleisher-Mannel) or rates in $K^0 \pi^\pm$ and asymmetry in $K^\pm \pi^\circ$ (Neubert-Rosner, Beneke et al).
- Measure time dependent asymmetries in $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ symmetric $d \leftrightarrow s$
 dependence on hadronic assumptions in the different calculations.
Measuring γ with $B_s \rightarrow D_s^{\pm}K^+$

- must be separated from $B_s \rightarrow D_s \pi^+$
 (~15 times larger Br)
- hadronic trigger, K/π separation, proper time resolution are fundamental
- gets $\gamma - 2\delta\gamma$
 (needs $2\delta\gamma$ from $B_s \rightarrow J/\Psi\Phi$)
- In one year of data (2 fb$^{-1}$)
 8k $D_s K$ and 72k $D_s \pi$
- expected sensitivity:
 \[
 \sigma(\gamma) \sim 10^0 \text{ for } \Delta m_s = 20 \text{ ps}^{-1} \\
 \sigma(\gamma) \sim 12^0 \text{ for } \Delta m_s = 30 \text{ ps}^{-1}
 \]
 depending on amplitudes, strong phases, $\gamma, \Delta m_s, \Delta \Gamma/\Gamma$

$B_s \rightarrow D_s \pi^+$ measure B_s oscillations Δm_s up to ~ 60 ps$^{-1}$

Clara Matteuzzi

FPCP, Paris 2-6 June 2003
Study of $B^0_s \rightarrow J/\psi \phi$ ($\mu\mu K^+K^-$)

- CP asymmetries determine $-2\delta\gamma$ (very small in Standard Model but sensitive to New Physics). And also Δm_s and $\Delta \Gamma_s$
- Must be separated from prompt J/Ψ production (possible with $0.1 < B/S < 0.4$ at 90% CL)

![Graphs showing proper time significance for $B^0_s \rightarrow J/\psi(\mu\mu)\phi$ signal and prompt $J/\psi(\mu\mu)$ background]
Study of $B^0_s \rightarrow J/\psi \ \phi$ \quad (\mu\mu \ K^+K^-)

- Needs angular analysis to disentangle CP-odd and CP-even states

- In one year of data (2 fb$^{-1}$)

 $109k \ J/\Psi \ \Phi$ and $19k \ J/\Psi \ \Phi$

 (\mu\mu) \quad (ee)

 expected sensitivity:

 $\sigma(2\delta\gamma) \sim 2^0$ for $\Delta m_s = 20 \text{ ps}^{-1}$

 also $B^0_s \rightarrow \Phi\Phi$ \quad $B^0_s \rightarrow J/\Psi \ \eta$ \quad $B^0_s \rightarrow \eta_c \ \Phi$ \quad probe $\delta\gamma$

(under study in LHCb)
Measuring γ with $B_{(s)} \rightarrow \pi \pi, K \pi, K K$

- Relies on hadronic trigger, excellent K/π separation, mass resolution
- Select B candidates with p_T, IP/σ, L, mass cuts
- Combinatorial bb bckgr. can be rejected ($S/B > 1$)

$\sigma(\gamma) \sim 3^0$ for $x_s = 20$

Clara Matteuzzi

FPCP, Paris 2-6 June 2003
Present estimate of LHCb Physics reach

These numbers are being updated, and more channels studied, in the re-optimization of the LHCb detector to be concluded in September 2003

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta B_d \to J/\psi K_s$</td>
<td>119 k</td>
<td>$\sigma(\beta) \approx 0.6^\circ$</td>
</tr>
<tr>
<td>$\gamma B_s \to D_s K$</td>
<td>8 k</td>
<td>$\sigma(\gamma) \approx 10^\circ$</td>
</tr>
<tr>
<td>$\alpha B_d \to \pi^+\pi^-$</td>
<td>27 k</td>
<td>$\sigma(\alpha) \approx 5^\circ - 10^\circ$</td>
</tr>
<tr>
<td>$2\delta\gamma B_s \to J/\psi \phi$</td>
<td>128 k</td>
<td>$\sigma(2\delta\gamma) \approx 2^\circ$</td>
</tr>
<tr>
<td>$</td>
<td>V_{td}/V_{ts}</td>
<td>B_s \to D_s \pi$</td>
</tr>
<tr>
<td>rare decays $B_d \to K^*\gamma$</td>
<td>20 k</td>
<td></td>
</tr>
</tbody>
</table>

1 year data \Rightarrow 2 fb$^{-1}$
Conclusions

The present of b-physics is already very rich

B-factories (BaBar, Belle, CLEO), Tevatron, + (LEP, SLC)

The future:
Next generations of dedicated experiments at hadron machines will have order of 10^{12} $b\bar{b}$ pairs per year with dedicated trigger and particle ID

LHCb is a unique opportunity to measure precisely angles and sides of the CP triangle and to understand the origin of CP violation in the SM and beyond

LHCb installation starts in 2005
data taking starts in 2007
Back-up slides
<table>
<thead>
<tr>
<th>channel</th>
<th>L0 (%)</th>
<th>L1(%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu)</td>
<td>e</td>
<td>h</td>
</tr>
<tr>
<td>(B^0_s \rightarrow J/\psi(\mu\mu)\ \phi)</td>
<td>90</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>(B^0_s \rightarrow J/\psi(ee)\ \phi)</td>
<td>7</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>(B^0_s \rightarrow D_s K)</td>
<td>8</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>(B^0_d \rightarrow K^* \gamma)</td>
<td>6</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>(B^0_d \rightarrow \pi^+ \pi^-)</td>
<td>7</td>
<td>9</td>
<td>55</td>
</tr>
</tbody>
</table>