$\left|V_{u b}\right|$ and $\left|V_{c b}\right|$: theoretical developments

Zoltan Ligeti
FPCP, 3-6 June 2003, Paris

- Introduction
- $\left|V_{c b}\right|$ - exclusive, inclusive
- $\left|V_{u b}\right|$ - exclusive, inclusive
- Conclusions

Why care about $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$?

$\left|V_{u b}\right|$: dominant uncertainty of the side opposite to $\beta \equiv \phi_{1}$
$\left|V_{c b}\right|$: large part of the uncertainty in ϵ_{K} constraint, and in $K \rightarrow \pi \nu \bar{\nu}$ in the future

Look for New Physics: compare (i) angles with sides; (ii) tree and loop processes ... semileptonic decays crucial for this
$b \rightarrow q \gamma, b \rightarrow q \ell^{+} \ell^{-}$, and $b \rightarrow q \nu \bar{\nu}(q=s, d)$ are sensitive probes of the SM theoretical tools same as for $\left|V_{x b}\right|$ - accuracy of theory limits sensitivity to NP

Some "extreme" scenarios for $\left|V_{u b}\right|$

(Not realistic, by this time B_{s} mixing should be measured)
Recent incl. [excl.] measurements of $\left|V_{u b}\right|$ high [low], overlap smaller than before Both fits less good than with average $\left|V_{u b}\right|$
Central values: difference of γ above 25°; require Δm_{s} near min / max
\Rightarrow Must aim at $\sigma\left(\left|V_{u b}\right|\right) \sim 5 \%$

Hadronic uncertainties

- To believe that a small discrepancy is due to new physics, need model independent predictions

Define: [strong interaction] model independent \equiv theoretical uncertainty suppressed by small parameters
... so theorists argue about (small parameters) $\times \mathcal{O}(1)$ instead of $\mathcal{O}(1)$ effects

Most of the recent progress comes from expanding in Λ / m_{Q} and $\alpha_{s}\left(m_{Q}\right)$
... a priori not known whether $\Lambda \sim 200 \mathrm{MeV}$ or $\sim 2 \mathrm{GeV}\left(f_{\pi}, m_{\rho}, m_{K}^{2} / m_{s}\right)$
... need experimental guidance to see which cases work how well

$\left|V_{c b}\right|$ - exclusive

$\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Heavy Quark Symmetry: brown muck only feels $v \rightarrow v^{\prime}\left(\right.$ not $m_{b} \rightarrow m_{c}$ or $\left.\vec{s}_{b} \rightarrow \vec{s}_{c}\right)$

Experiments measure: $\left|V_{c b}\right| \times \mathcal{F}_{*}(w)$ Theory issues: (i) $\mathcal{F}_{*}(1)$, (ii) shape

Theory predicts: $\mathcal{F}_{*}(1)=0.91 \pm 0.04$ [$1-\mathcal{F}_{*}(1)$: lattice, sum rules, models]

$\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} \ell \bar{\nu}$ (cont.)

$\left|V_{c b}\right|$ sensitive to shape of $\mathcal{F}_{*}(w)$: fits use analyticity constraint (slope vs. curvature at $w=1$)
(Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert)
$\Rightarrow\left|V_{c b}\right|=\left(42.1 \pm 1.1_{\exp } \pm 1.9_{\mathrm{th}}\right) \times 10^{-3}{ }_{(\text {nepp-ph(0304132) }}$
... HQS relates $B \rightarrow D$ and D^{*} shapes (Grinstein, $Z \mathrm{Z}$)
... Sum rule relations to $B \rightarrow D^{* *} \ell \bar{\nu}$

- New bounds on derivatives of Isgur-Wise function (Le Yaouanc, Oliver, Raynal, PLB 557 207, 2003)

$$
(-1)^{n} \xi^{(n)}(1) \geq \frac{2 n+1}{4}\left[(-1)^{n-1} \xi^{(n-1)}(1)\right] \quad \Rightarrow \quad(-1)^{n} \xi^{(n)}(1) \geq \frac{(2 n+1)!!}{2^{2 n}}
$$

- Questions: (i) how to best use constraints on shape?
(ii) if $0^{+}, 1^{+} D$ states were $\sim 2.22,2.36 \mathrm{GeV}$ with $\Gamma \sim 300 \mathrm{MeV}$, could it affect $\left|V_{c b}\right|$?

$$
\left|V_{c b}\right| \text { - inclusive }
$$

Why inclusive decays?

- Sum over hadronic final states, subject to constraints determined by short distance physics

Decay: short distance (calculable)
Hadronization: long distance (nonperturbative), but probability to hadronize somehow is unity

- Rates calculable in an OPE, expansion in $\Lambda_{\mathrm{QCD}} / m_{b}$ and $\alpha_{s}\left(m_{b}\right)$:

$$
\mathrm{d} \Gamma=\binom{b \text { quark }}{\text { decay }} \times\left\{1+\frac{0}{m_{b}}+\frac{f\left(\lambda_{1}, \lambda_{2}\right)}{m_{b}^{2}}+\ldots+\alpha_{s}(\ldots)+\alpha_{s}^{2}(\ldots)+\ldots\right\}
$$

In "most" of phase space, details of b quark wavefunction unimportant, only averages matter: $\lambda_{1} \sim\left\langle k^{2}\right\rangle$ not well-known, $\lambda_{2} \sim\left\langle\sigma_{\mu \nu} G^{\mu \nu}\right\rangle=\left(m_{B^{*}}^{2}-m_{B}^{2}\right) / 4, \ldots$

Interesting quantities computed to order $\alpha_{s}, \alpha_{s}^{2} \beta_{0}$, and $1 / m^{3}$
FPCP 2003

Issues relevant for $B \rightarrow X_{c} \ell \bar{\nu}$

- Total semileptonic rate precisely calculable:

$$
\left|V_{c b}\right| \sim\left[42 \pm\left(\text { error mostly in } m_{b} \& \lambda_{1}\right)\right] \times 10^{-3}\left(\frac{\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}\right)}{0.105} \frac{1.6 \mathrm{ps}}{\tau_{B}}\right)^{1 / 2}
$$

- Values of m_{b} and λ_{1} ?
- Four more nonperturbative parameters at $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{3} / m_{b}^{3}\right)$
- Theoretical uncertainties (perturbation theory, masses)
- In restricted regions, OPE can break down (especially relevant for $\left|V_{u b}\right|$)
- Implicit assumption: quark-hadron duality
- Address these and determine unknown param's and $\left|V_{c b}\right|$ from shape variables:
"Moments:" $\quad\langle X\rangle=\langle X\rangle_{\text {parton }}+\frac{0}{m_{b}} F_{\Lambda}+\frac{\lambda_{i}}{m_{b}^{2}} F_{\lambda_{i}}+\frac{\rho_{i}}{m_{b}^{3}} F_{\rho_{i}}+\ldots$
$\langle X\rangle_{\text {parton }}$ and each F_{i} has an expansion in α_{s} and depends on m_{c} / m_{b}

Many shape variables measured...

They allow: (i) precision extractions of m_{b} and HQET matrix elements
(ii) testing validity of the whole approach

Global fit as of Fall '02

Results: (Bauer, ZL, Luke, Manohar, PRD 67 054012, 2003)

$$
\begin{aligned}
\left|V_{c b}\right| & =(40.8 \pm 0.9) \times 10^{-3} \\
m_{b}^{1 S} & =(4.74 \pm 0.10) \mathrm{GeV} \\
\bar{m}_{b}\left(\bar{m}_{b}\right) & =(4.22 \pm 0.09) \mathrm{GeV}
\end{aligned}
$$

Similar fits: (Battagia etal, PLE 55641,2003)

$$
\begin{aligned}
\left|V_{c b}\right| & =(41.9 \pm 1.1) \times 10^{-3} \\
m_{b}(1 \mathrm{GeV}) & =(4.59 \pm 0.08) \mathrm{GeV} \\
\Rightarrow m_{b}^{1 S} & \simeq 4.69 \mathrm{GeV}
\end{aligned}
$$

Theoretical uncertainties dominate \Rightarrow their correlations are essential when many observables determine hadronic parameters and $\left|V_{c b}\right|$

Theoretical limitations: setting all experimental errors to zero, we would obtain

$$
\sigma\left(\left|V_{c b}\right|\right)=0.35 \times 10^{-3} \quad \sigma\left(m_{b}^{1 S}\right)=35 \mathrm{MeV}
$$

FPCP 2003
ZL-p. 9
June 5, Paris

Bauer-Trott moments

- Constructed to suppress (enhance) sensitivity to certain matrix elements (fractional moments of E_{ℓ} spectrum)

$R_{3 a}$	$R_{3 b}$	$R_{4 a}$	$R_{4 b}$	D_{3}	D_{4}
0.302 ± 0.003	2.261 ± 0.013	2.127 ± 0.013	0.684 ± 0.002	0.520 ± 0.002	0.604 ± 0.002
above was our prediction, below is CLEO measurement					
0.3016 ± 0.0007	2.2621 ± 0.0031	2.1285 ± 0.0030	0.6833 ± 0.0008	0.5193 ± 0.0008	0.6036 ± 0.0006

Data and theory beautifully consistent (for $E_{\ell} \geq 1.5 \mathrm{GeV}$)
NB: excited D states make small contribution in this region

Two possible caveats and the $D_{s J}^{*}$

Hadronic moments for $E_{\ell}<1.5 \mathrm{GeV}$

Difference seems significant

- Eliminate implicit model dependence in measurements
"Gremm-Kapustin puzzle" ('97)
If no X_{c} between D^{*} and $D_{1}(2420) \ldots$
$\left\langle m_{X}^{2}\right\rangle$ implies $\leq 25 \%$ excited charm in $B \rightarrow X_{c} \ell \bar{\nu}$ decay, while:
$\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}\right)-\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right) \sim 35 \%$
\Rightarrow assumption / theory / data wrong?

May be a disappearing problem

- BELLE: $0^{+} D_{0}^{*}$ at 2290 MeV , well below predictions (ICHEP’02)
- BABAR's $D_{s J}^{*}(2317)$: corresponding non-strange D should be <2290
\Rightarrow Precise $D_{u, d, s}$ spectroscopy crucial

Summary for $\left|V_{c b}\right|$

- Current precision is already at the $4-5 \%$ level
- Limiting theory errors - inclusive: m_{b} and matrix elements exclusive: $\mathcal{F}_{(*)}(1)$ and shape
- "Duality" hard to quantify - cross-checks are important
- Inclusive and exclusive determinations both important
- If all caveats resolved, $\sigma\left(\left|V_{c b}\right|\right)$ may be reduced to $1-2 \%$ level

Possible improvements:

- better consistenty and precision of shape variables $\left(B \rightarrow X_{c} \ell \bar{\nu}\right.$ and $\left.X_{s} \gamma\right)$
- full α_{s}^{2} calculation of spectra (surprises unlikely)
- better understanding of $B \rightarrow D^{(*)} \ell \bar{\nu}$ shapes; unquenched lattice form factors
$\left|V_{u b}\right|$ - exclusive

Exclusive $b \rightarrow u$ decays

- Less constraints from heavy quark symmetry than in $b \rightarrow c$ $\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_{B} \times\left|V_{u b}\right|$ - need to rely on lattice f_{B}
\Rightarrow Useful constraints from unitarity/analyticity
\Rightarrow Ratios $=1$ in heavy quark or chiral symmetry limit (+ study corrections)

Exclusive $b \rightarrow u$ decays

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
$\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_{B} \times\left|V_{u b}\right|$ - need to rely on lattice f_{B}
\Rightarrow Useful constraints from unitarity/analyticity
\Rightarrow Ratios $=1$ in heavy quark or chiral symmetry limit (+ study corrections)
- Deviations of "Grinstein-type double ratios" from unity are more suppressed:
$\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$

Exclusive $b \rightarrow u$ decays

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
$\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_{B} \times\left|V_{u b}\right|$ - need to rely on lattice f_{B}
\Rightarrow Useful constraints from unitarity/analyticity
\Rightarrow Ratios $=1$ in heavy quark or chiral symmetry limit (+ study corrections)
- Deviations of "Grinstein-type double ratios" from unity are more suppressed:
$\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$

$$
\frac{B \rightarrow \rho \ell \bar{\nu}}{B \rightarrow K^{*} \ell^{+} \ell^{-}} \times \frac{D \rightarrow K^{*} \ell \bar{\nu}}{D \rightarrow \rho \ell \bar{\nu}}-\text { accessible soon? }
$$

Exclusive $b \rightarrow u$ decays

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
$\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_{B} \times\left|V_{u b}\right|$ - need to rely on lattice f_{B}
\Rightarrow Useful constraints from unitarity/analyticity
\Rightarrow Ratios $=1$ in heavy quark or chiral symmetry limit (+ study corrections)
- Deviations of "Grinstein-type double ratios" from unity are more suppressed:
$\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$
$\frac{B \rightarrow \rho \ell \bar{\nu}}{B \rightarrow K^{*} \ell^{+} \ell^{-}} \times \frac{D \rightarrow K^{*} \ell \bar{\nu}}{D \rightarrow \rho \ell \bar{\nu}}-$ accessible soon?
$\frac{B \rightarrow \ell \bar{\nu}}{B_{s} \rightarrow \ell^{+} \ell^{-}} \times \frac{D_{s} \rightarrow \ell \bar{\nu}}{D \rightarrow \ell \bar{\nu}}-$ very clean... in a decade

Soft-collinear effective theory

- A new EFT to describe the interactions of energetic but low invariant mass particles with soft quanta ["the" connection between heavy quarks and jet physics?]
... Operator formulation instead of studying regions of Feynman diagrams
... Simplified and new proofs ($B \rightarrow D \pi$) of factorization theorems (Bauer, Piriol, Stewart)
- E.g., $B \rightarrow \pi \ell \bar{\nu}$ form factor: Issues: tails of wave fn's, Sudakov suppression, etc.

Recently proven: $F(Q)=f^{\text {non-fact. }}(Q)+f^{\text {fact. }}(Q)$
Hope to understand accuracy of form factor relations in low q^{2} region

$B \rightarrow \pi \ell \bar{\nu}$ from lattice QCD

Present calculations are quenched
Need unquenched to be model independent
Few - 10% errors seem to be achievable
Calculations in larger/full q^{2} range may become possible (presently low p_{π})
$B \rightarrow \rho$ harder due to sizable Γ_{ρ} / m_{ρ}
$\left|V_{u b}\right|$ - inclusive

The problem for $B \rightarrow X_{u} \ell \bar{\nu}$

- Total rate known at $\sim 5 \%$ level, similar to $\Gamma\left(B \rightarrow X_{c} \ell \bar{\nu}\right)$

$$
\left|V_{u b}\right| \sim\left[3.04 \pm 0.08_{m_{b}} \pm 0.08_{\mathrm{pert}}\right] \times 10^{-3}\left(\frac{\mathcal{B}\left(B \rightarrow X_{u} \ell \bar{\nu}\right)}{0.001} \frac{1.6 \mathrm{ps}}{\tau_{B}}\right)^{1 / 2}
$$

Can huge charm background (| $V_{c b} / V_{u b} \mid \sim 10$) be removed w/o phase space cuts?

- If cuts needed, life gets more complicated: perturbative and nonperturbative corrections can get a lot larger
E.g.: purely nonperturbative effects shift endpoint from $m_{b} / 2$ to $m_{B} / 2$

Back to the OPE: when should it converge?

- Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\mathrm{QCD}}$

\sim field theoretic version of multipole expansion
Time ordered product short distance dominated if expansion in k converges:

$$
\begin{array}{r}
\frac{1}{\left(m_{b} v-q+k\right)^{2}}=\frac{1}{\left(m_{b} v-q\right)^{2}+2 k \cdot\left(m_{b} v-q\right)+k^{2}} \\
m_{X}^{2} \gg E_{X} \Lambda_{\mathrm{QCD}} \gg \Lambda_{\mathrm{QCD}}^{2}
\end{array}
$$

Need to allow:
OPE breaks down: m_{X} restricted to few $\times \Lambda_{\mathrm{QCD}}$ (trivial - resonances)

$$
m_{X}^{2} \sim E_{X} \Lambda_{\mathrm{QCD}} \text { but } E_{X} \gg \Lambda_{\mathrm{QCD}} \text { (nontrivial - many states) }
$$

\Rightarrow Design cuts to avoid these regions

Inclusive $B \rightarrow X_{u} \ell \bar{\nu}$ phase space

Possible cuts to eliminate $B \rightarrow X_{c} \ell \bar{\nu}$ background:

- Lepton spectrum: $E_{\ell}>\left(m_{B}^{2}-m_{D}^{2}\right) / 2 m_{B}$
- Hadronic mass spectrum: $m_{X}<m_{D}$

- Dilepton mass spectrum: $q^{2}>\left(m_{B}-m_{D}\right)^{2}$
- Combinations of cuts

FPCP 2003
ZL-p. 18
June 5, Paris

$B \rightarrow X_{u} \ell \bar{\nu}$ spectra

- Troubles come from the coincidence: $m_{c}^{2} \approx m_{b} \times 400 \mathrm{MeV}$
$E_{\ell}>\left(m_{B}^{2}-m_{D}^{2}\right) / 2 m_{B}$ or $m_{X}<m_{D}$ include $E_{X} \sim m_{b} / 2 \Rightarrow m_{X}^{2} \ngtr E_{X} \Lambda_{\mathrm{QCD}}$

— b quark decay to $\mathcal{O}\left(\alpha_{s}\right)$
— incl. "Fermi-motion" (model)

Rate:
OPE:

$$
\sim 10 \%
$$

infinite set of terms equally important
$\sim 80 \%$

Experiment happy
need neutrino reconstruction
$\sim 20 \%$
first few terms converge

FPCP 2003
ZL—p. 19
June 5, Paris

Theory happy

-

Large E_{ℓ} and small m_{X} regions

Bad: infinite set of terms in OPE equally important (shape function)
Good: Fermi motion effects universal at leading order in $\Lambda_{\mathrm{QCD}} / m_{b}$ related to $B \rightarrow X_{s} \gamma$ photon spectrum

- $E_{\ell}>\frac{m_{B}^{2}-m_{D}^{2}}{2 m_{B}}$: NLO Sudakov logs resummed

Operators other than O_{7} in $B \rightarrow X_{s} \gamma$
Terms unrelated to $B \rightarrow X_{s} \gamma$ sizable (Leibovich, ZL, Wise; Bauer, Luke, Mannel)

- $m_{X}<m_{D}$: lot more rate, but nonperturbative input formally still $\mathcal{O}(1)$
corrections smaller and inclusive description should be valid, but model dependence increases rapidly as $m_{X}^{\text {cut }}$ lowered

NB: $\bar{\Lambda} \& \lambda_{1}$ (HQET) $\neq \bar{\Lambda} \& \lambda_{1}$ (shape function models), e.g., De Fazio \& Neubert best would be to use $B \rightarrow X_{s} \gamma$ spectrum directly

FPCP 2003
ZL - p. 20
June 5, Paris

Lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for
Fermi motion

Lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay
spectrum
with a model for
Fermi motion

Lepton endpoint vs. $B \rightarrow X_{s} \gamma$

difference:

Lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for Fermi motion

difference:

Lepton endpoint vs. $B \rightarrow X_{s} \gamma$

Limiting uncertainties: subleading corrections? inclusive enough?
difference:

\Downarrow (CLEO 2002)
$\left|V_{u b}\right|=(4.08 \pm 0.63) \times 10^{-3}$

Sizable subleading twist effects

$$
\begin{gathered}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} y}=\frac{G_{F}^{2} m_{b}^{5}\left|V_{u b}\right|^{2}}{192 \pi^{3}}\left\{y^{2}(3-2 y) 2 \theta(1-y)-\frac{\lambda_{2}}{m_{b}^{2}}\left[11 \delta(1-y)-2 y^{2}(6+5 y) \theta(1-y)\right]\right. \\
\left.-\frac{\lambda_{1}}{m_{b}^{2}}\left[\frac{1}{3} \delta^{\prime}(1-y)+\frac{1}{3} \delta(1-y)-\frac{10}{3} y^{3} \theta(1-y)\right]+\ldots\right\}
\end{gathered}
$$

Coefficient corresponding to 11 is 3 in $B \rightarrow X_{s} \gamma$
(Leibovich, ZL, Wise, PLB 539 242, 2002)

Models: $\sim 15 \%$ effect in $\left|V_{u b}\right|$ for $E_{\ell}^{\text {cut }}=2.3 \mathrm{GeV}$, decrease with $E_{\ell}^{\text {cut }}$

(Bauer, Luke, Mannel, PLB 543 261, 2002)
What part is "calculable", what is the "uncertainty"?

FPCP 2003
ZL-p. 22
June 5, Paris

Weak annihilation (sub-subleading)

- Bad news: $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{3} / m_{b}^{3}\right)$ in rate, enhanced by $16 \pi^{2}$... concentrated at large E_{ℓ}, q^{2}, and small m_{X}^{2} \Rightarrow enters all $\left|V_{u b}\right|$ extractions

Cancellation between: $\langle B|\left(\bar{b} \gamma^{\mu} P_{L} u\right)\left(\bar{u} \gamma_{\mu} P_{L} b\right)|B\rangle$

$$
\langle B|\left(\bar{b} P_{L} u\right)\left(\bar{u} P_{L} b\right)|B\rangle
$$

(Bigi \& Uraltsev; Voloshin; Leibovich, ZL, Wise)

Estimated, with large uncertainty, as:

$$
\mathcal{O}\left[16 \pi^{2} \times\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3} \times\binom{\text { factorization }}{\text { violation }}\right] \sim 0.03\left(\frac{f_{B}}{200 \mathrm{MeV}}\right)^{2} \frac{B_{2}-B_{1}}{0.1}
$$

If $\sim 3 \%$ uncertainty in total rate, then $\sim 15 \%$ in $\left|V_{u b}\right|$ from lepton endpoint, $\lesssim 10 \%$ in $\left|V_{u b}\right|$ from large q^{2} region, less for $m_{X}<m_{D}$ (more rate included)

- Constrain WA: compare D^{0} vs. D_{s} SL widths, or $V_{u b}$ from $B^{ \pm}$vs. B^{0} decay

Large q^{2} region

- Good: first few terms in OPE can be trusted

Bad: expansion is more like in $\Lambda_{\mathrm{QCD}} / m_{c}$ and $\alpha_{s}\left(m_{c}\right)$ than at scale $m_{b} \quad$ (Neubert '00)

- Combined $q^{2} \& m_{X}$ cuts: more rate, scale goes up $m_{c} \Rightarrow \frac{m_{b}^{2}-q_{\text {cut }}^{2}}{m_{b} \Lambda_{\mathrm{CDD}}} \quad$ (Bauer, 2L, Luke '01)

Cuts on $\left(q^{2}, m_{X}\right)$	included fraction of $b \rightarrow u \ell \bar{\nu}$ rate	error of $\left\|V_{u b}\right\|$ $\delta m_{b}=80 / 30 \mathrm{MeV}$
$6 \mathrm{GeV}^{2}, m_{D}$	46%	$8 \% / 5 \%$
$8 \mathrm{GeV}^{2}, 1.7 \mathrm{GeV}$	33%	$9 \% / 6 \%$
$\left(m_{B}-m_{D}\right)^{2}, m_{D}$	17%	$15 \% / 12 \%$

Strategy: (i) reconstruct $p_{\nu} \Rightarrow q^{2}, m_{X}$; make cut on m_{X} as large as possible
(ii) for a given m_{X} cut, reduce q^{2} cut to minimize overall uncertainty

Can get $30-40 \%$ of events, even with cuts away from $b \rightarrow c$ region

FPCP 2003
ZL—p. 24
June 5, Paris

Summary for $\left|V_{u b}\right|$

- Total $B \rightarrow X_{u} \ell \bar{\nu}$ rate known precisely; phase space cuts seem unavoidable
- $E_{\ell}>\left(m_{B}^{2}-m_{D}^{2}\right) / 2 m_{B}$: simplest experimentally
... even using $B \rightarrow X_{s} \gamma$ spectrum, corrections are $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$
... only $\sim 10 \%$ of phase space - inclusive enough?
- $m_{X}^{2}<m_{D}^{2}$: lots of rate but still sensitive to shape function
... uncertainties increase rapidly if cut is significantly below m_{D}
- $q^{2}>\left(m_{B}-m_{D}\right)^{2}$: no (leading) shape funtion, expansion formally in $\Lambda_{\mathrm{QCD}} / m_{c}$
- combined q^{2} and m_{X} cuts: less rate than pure m_{X} cut, good theoretical control
\Rightarrow Tricky business, need to measure $\left|V_{u b}\right|$ in as many clean ways as possible, confidence will be gained by convergence of extractions

Wishlist for $\left|V_{u b}\right|$

Experiment:

- get the cuts as close to the charm threshold as possible
- improve measurement of $B \rightarrow X_{s} \gamma$ photon spectrum (lower cut) and try to use it directly instead of through parameterizations
- constrain WA by comparing $\left|V_{u b}\right|$ from $B^{ \pm}$vs. B^{0}, or D^{0} vs. $D_{s} \mathrm{SL}$ widths

Theory:

- full α_{s}^{2} corrections (beyond $\alpha_{s}^{2} \beta_{0}$) known only for total rate and q^{2} spectrum, not for other distributions

Both:

- precise determination of m_{b} - rate $\propto m_{b}^{5}$, even stronger sensitivity with cuts

Conclusions

Conclusions

- $\left|V_{c b}\right|$ is known at the $\sim 5 \%$ level, error may soon become half of this inclusive: consistency of moments; exclusive: $\mathcal{F}_{*}(1)$ from unquenched lattice
- Model independent $\sim 10 \%\left|V_{u b}\right|$ seems posible, ultimately similar to present $\left|V_{c b}\right|$ inclusive: neutrino reconstruction crucial; exclusive: needs unquenched lattice
- For both $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$, important to pursue both inclusive and exclusive
- Progress in understanding exclusive heavy \rightarrow light form factors for $q^{2} \ll m_{B}^{2}$ $B \rightarrow \pi / \rho \ell \bar{\nu}, K^{*} \gamma, K^{(*)} \ell^{+} \ell^{-}$below the $\psi \Rightarrow$ increase sensitivity to new physics ... related to issues in factorization in charmless decays
- Theoretical limit for inclusive $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ appear to be about $\sim 1 \%$ and $\sim 5 \%$

Extra slides

"Moments" - theoretical uncertainties

Define theoretical uncertainties, so it is not judged case-by-case and a posteriori Avoid large weight to an accurate measurement that cannot be computed reliably

- Unknown $1 / m_{b}^{3}$ matrix elements $-\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{3}\right)$ but no preferred value \Rightarrow add in fit:
$\Delta \chi^{2}\left(m_{\chi}, M_{\chi}\right)= \begin{cases}0, & |\langle\mathcal{O}\rangle| \leq m_{\chi}^{3} \\ {\left[|\langle\mathcal{O}\rangle|-m_{\chi}^{3}\right]^{2} / M_{\chi}^{6},} & |\langle\mathcal{O}\rangle|>m_{\chi}^{3}\end{cases}$
Take $M_{\chi}=0.5 \mathrm{GeV}$, and vary $0.5 \mathrm{GeV}<m_{\chi}<1 \mathrm{GeV}$

- Uncomputed higher order terms - estimate using naive dimensional analysis:
- $\left(\alpha_{s} / 4 \pi\right)^{2} \sim 0.0003$
- $\left(\alpha_{s} / 4 \pi\right)\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \sim 0.0002$
- $\Lambda_{\mathrm{QCD}}^{4} /\left(m_{b}^{2} m_{c}^{2}\right) \sim 0.001$

Use relative error: $\sqrt{(0.001)^{2}+(\text { last-computed/2)}}$

FPCP 2003
$Z L-p . i$
June 5, Paris

Results in $1 S$ scheme

- Do fits both excluding (top) and including (bottom) BABAR data

$m_{\chi}[\mathrm{GeV}]$	χ^{2}	$\left\|V_{c b}\right\| \times 10^{3}$	$m_{b}^{1 S}[\mathrm{GeV}]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

Sensitivity to m_{χ} is small ($1 / m^{3}$ errors significant, but so are their correlations)
BABAR data increases $\chi^{2} /$ d.o.f. significantly - more later
Theoretical uncertainties important — neglecting them gives $\chi^{2}=81$ for 9 d.o.f. Including only $1 / m^{3}$ terms gives $\chi^{2}=21$ for 5 d.o.f.; much better (but still bad) fit

Results in different mass schemes

tree level, $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(\alpha_{s}^{2} \beta_{0}\right)$
better convergence in 1S and PS schemes than in pole or $\overline{\mathrm{MS}}$

