$|V_{ub}|$ and $|V_{cb}|$: theoretical developments

Zoltan Ligeti FPCP, 3–6 June 2003, Paris

- Introduction
- $|V_{cb}|$ exclusive, inclusive
- $|V_{ub}|$ exclusive, inclusive
- Conclusions

Why care about $|V_{ub}|$ and $|V_{cb}|$?

 $|V_{ub}|$: dominant uncertainty of the side opposite to $\beta \equiv \phi_1$

 $|V_{cb}|$: large part of the uncertainty in ϵ_K constraint, and in $K \to \pi \nu \bar{\nu}$ in the future

Look for New Physics: compare (i) angles with sides; (ii) tree and loop processes ... semileptonic decays crucial for this

 $b \to q\gamma$, $b \to q \ell^+ \ell^-$, and $b \to q \nu \bar{\nu}$ (q = s, d) are sensitive probes of the SM theoretical tools same as for $|V_{xb}|$ — accuracy of theory limits sensitivity to NP

Some "extreme" scenarios for $|V_{ub}|$

(Not realistic, by this time B_s mixing should be measured)

Recent incl. [excl.] measurements of $|V_{ub}|$ high [low], overlap smaller than before Both fits less good than with average $|V_{ub}|$

Central values: difference of γ above 25° ; require Δm_s near min / max

 \Rightarrow Must aim at $\sigma(|V_{ub}|) \sim 5\%$

Hadronic uncertainties

- To believe that a small discrepancy is due to new physics, need model independent predictions
 - Define: [strong interaction] model independent \equiv theoretical uncertainty suppressed by small parameters
 - ... so theorists argue about (small parameters) $\times \mathcal{O}(1)$ instead of $\mathcal{O}(1)$ effects

Most of the recent progress comes from expanding in Λ/m_Q and $\alpha_s(m_Q)$... a priori not known whether $\Lambda \sim 200$ MeV or ~ 2 GeV $(f_{\pi}, m_{\rho}, m_K^2/m_s)$... need experimental guidance to see which cases work how well

$$|V_{cb}|$$
 — exclusive

 $|V_{cb}|$ from $B o D^{(*)} \ell ar{
u}$

Heavy Quark Symmetry: brown muck only feels $v \to v'$ (not $m_b \to m_c$ or $\vec{s_b} \to \vec{s_c}$) $\frac{\mathrm{d}\Gamma(B \to D^{(*)}\ell\bar{\nu})}{\mathrm{d}w} = (\dots) (w^2 - 1)^{3(1)/2} |V_{cb}|^2 \mathcal{F}^2_{(*)}(w)$ $\swarrow w \equiv v \cdot v' \qquad \text{Isgur-Wise function} + \dots \qquad B$ $\mathcal{F}(1) = \mathbf{1}_{\mathbf{Isgur}-\mathbf{Wise}} + 0.02_{\alpha_s,\alpha_s^2} + \frac{(\text{lattice or models})}{m_{c,b}} + \dots$ $\mathcal{F}_*(1) = 1_{\text{Isgur-Wise}} - 0.04_{\alpha_s, \alpha_s^2} + \frac{0_{\text{Luke}}}{m_{c,b}} + \frac{(\text{lattice or models})}{m_{c,b}^2} + \dots$ Experiments measure: $|V_{cb}| \times \mathcal{F}_{*}(w)$ $0.05 \neq (c)$ Theory issues: (i) $\mathcal{F}_*(1)$, (ii) shape $D^{*+}\ell \overline{v}$ Theory predicts: $\mathcal{F}_*(1) = 0.91 \pm 0.04$ ר*0*נ*⊽ 0.01 $[1 - \mathcal{F}_*(1)]$: lattice, sum rules, models] (CLEO, PRD **67** 032001, 2003) 0Ł. 1.0 1.3 1.1 1.2 14 15 w

$|V_{cb}|$ from $B ightarrow D^{(*)} \ell ar{ u}$ (cont.)

$$\begin{split} |V_{cb}| & \text{sensitive to shape of } \mathcal{F}_*(w): \text{ fits use analyt-} \\ & \text{icity constraint (slope vs. curvature at } w = 1) \\ & \text{(Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert)} \\ & \Rightarrow |V_{cb}| = (42.1 \pm 1.1_{exp} \pm 1.9_{th}) \times 10^{-3} \text{ (hep-ph/0304132)} \\ & \dots \text{ HQS relates } B \to D \text{ and } D^* \text{ shapes} \quad \text{(Grinstein, ZL)} \\ & \dots \text{ Sum rule relations to } B \to D^{**} \ell \bar{\nu} \end{split}$$

• New bounds on derivatives of Isgur-Wise function (Le Yaouanc, Oliver, Raynal, PLB 557 207, 2003) $(-1)^{n} \xi^{(n)}(1) \ge \frac{2n+1}{4} \left[(-1)^{n-1} \xi^{(n-1)}(1) \right] \quad \Rightarrow \quad (-1)^{n} \xi^{(n)}(1) \ge \frac{(2n+1)!!}{2^{2n}}$

• Questions: (i) how to best use constraints on shape? (ii) if 0^+ , $1^+ D$ states were $\sim 2.22, 2.36$ GeV with $\Gamma \sim 300$ MeV, could it affect $|V_{cb}|$?

$$|V_{cb}|$$
 — inclusive

Why inclusive decays?

- Sum over hadronic final states, subject to constraints determined by short distance physics
 - Decay: short distance (calculable)Hadronization: long distance (nonperturbative),but probability to hadronize somehow is unity

• Rates calculable in an OPE, expansion in $\Lambda_{\rm QCD}/m_b$ and $\alpha_s(m_b)$:

$$\mathrm{d}\Gamma = \begin{pmatrix} b \text{ quark} \\ \mathrm{decay} \end{pmatrix} \times \left\{ 1 + \frac{0}{m_b} + \frac{f(\lambda_1, \lambda_2)}{m_b^2} + \ldots + \alpha_s(\ldots) + \alpha_s^2(\ldots) + \ldots \right\}$$

In "most" of phase space, details of *b* quark wavefunction unimportant, only averages matter: $\lambda_1 \sim \langle k^2 \rangle$ not well-known, $\lambda_2 \sim \langle \sigma_{\mu\nu} G^{\mu\nu} \rangle = (m_{B^*}^2 - m_B^2)/4$, ...

Interesting quantities computed to order α_s , $\alpha_s^2 \beta_0$, and $1/m^3$

• Total semileptonic rate precisely calculable:

 $|V_{cb}| \sim \left[42 \pm (\text{error mostly in } m_b \& \lambda_1)\right] \times 10^{-3} \left(\frac{\mathcal{B}(B \to X_c \ell \bar{\nu})}{0.105} \frac{1.6 \,\text{ps}}{\tau_B}\right)^{1/2}$

- Values of m_b and λ_1 ?
- Four more nonperturbative parameters at ${\cal O}(\Lambda_{
 m QCD}^3/m_b^3)$
- Theoretical uncertainties (perturbation theory, masses)
- In restricted regions, OPE can break down (especially relevant for $|V_{ub}|$)
- Implicit assumption: quark-hadron duality
- Address these and determine unknown param's and $|V_{cb}|$ from shape variables:

"Moments:"
$$\langle X \rangle = \langle X \rangle_{\text{parton}} + \frac{0}{m_b} F_{\Lambda} + \frac{\lambda_i}{m_b^2} F_{\lambda_i} + \frac{\rho_i}{m_b^3} F_{\rho_i} + \dots$$

 $\langle X \rangle_{
m parton}$ and each F_i has an expansion in α_s and depends on m_c/m_b

Many shape variables measured...

They allow: (i) precision extractions of m_b and HQET matrix elements (ii) testing validity of the whole approach

BERKELEY LAB

Global fit as of Fall '02

Results: (Bauer, ZL, Luke, Manohar, PRD 67 054012, 2003) $|V_{cb}| = (40.8 \pm 0.9) \times 10^{-3}$ $m_b^{1S} = (4.74 \pm 0.10) \text{ GeV}$ $\overline{m}_b(\overline{m}_b) = (4.22 \pm 0.09) \text{ GeV}$ **Similar fits:** (Battaglia *et al.*, PLB 556 41, 2003) $|V_{cb}| = (41.9 \pm 1.1) \times 10^{-3}$ $m_b(1 \text{ GeV}) = (4.59 \pm 0.08) \text{ GeV}$ $\Rightarrow m_b^{1S} \simeq 4.69 \text{ GeV}$

Theoretical uncertainties dominate \Rightarrow their correlations are essential when many observables determine hadronic parameters and $|V_{cb}|$

Theoretical limitations: setting all experimental errors to zero, we would obtain

$$\sigma(|V_{cb}|) = 0.35 \times 10^{-3} \qquad \sigma(m_b^{1S}) = 35 \,\mathrm{MeV}$$

• Constructed to suppress (enhance) sensitivity to certain matrix elements (fractional moments of E_{ℓ} spectrum)

R_{3a}	R_{3b}	R_{4a}	R_{4b}	D_3	D_4			
0.302 ± 0.003	2.261 ± 0.013	2.127 ± 0.013	0.684 ± 0.002	0.520 ± 0.002	0.604 ± 0.002			
above was our prediction, below is CLEO measurement								
0.3016 ± 0.0007	2.2621 ± 0.0031	2.1285 ± 0.0030	0.6833 ± 0.0008	0.5193 ± 0.0008	0.6036 ± 0.0006			

Data and theory beautifully consistent (for $E_{\ell} \ge 1.5 \,\text{GeV}$)

NB: excited D states make small contribution in this region

Two possible caveats and the D^*_{sJ}

Difference seems significant

 Eliminate implicit model dependence in measurements "Gremm-Kapustin puzzle" ('97) If no X_c between D^* and $D_1(2420)...$

 $\langle m_X^2 \rangle$ implies $\leq 25\%$ excited charm in $B \rightarrow X_c \ell \bar{\nu}$ decay, while:

 $\mathcal{B}(B \to X_c \ell \bar{\nu}) - \mathcal{B}(B \to D^{(*)} \ell \bar{\nu}) \sim 35\%$

 \Rightarrow assumption / theory / data wrong?

May be a disappearing problem

- BELLE: 0^+ D_0^* at 2290 MeV, well below predictions (ICHEP'02)

- BABAR's $D^*_{sJ}(2317)$: corresponding non-strange D should be < 2290

 \Rightarrow Precise $D_{u,d,s}$ spectroscopy crucial

Summary for $|V_{cb}|$

- Current precision is already at the 4-5% level
- Limiting theory errors inclusive: m_b and matrix elements exclusive: $\mathcal{F}_{(*)}(1)$ and shape
- "Duality" hard to quantify cross-checks are important
- Inclusive and exclusive determinations both important
- If all caveats resolved, $\sigma(|V_{cb}|)$ may be reduced to 1-2% level

Possible improvements:

- better consistenty and precision of shape variables ($B \rightarrow X_c \ell \bar{\nu}$ and $X_s \gamma$)
- full α_s^2 calculation of spectra (surprises unlikely)
- better understanding of $B \rightarrow D^{(*)} \ell \bar{\nu}$ shapes; unquenched lattice form factors

$$|V_{ub}|$$
 — exclusive

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
 - $\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_B \times |V_{ub}|$ need to rely on lattice f_B
 - \Rightarrow Useful constraints from unitarity/analyticity
 - \Rightarrow Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
 - $\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_B \times |V_{ub}|$ need to rely on lattice f_B
 - \Rightarrow Useful constraints from unitarity/analyticity
 - \Rightarrow Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)

Deviations of "Grinstein-type double ratios" from unity are more suppressed:

 $\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D} \quad - \text{lattice: double ratio} = 1 \text{ within few \%}$ (Grinstein, '93)

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
 - $\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_B \times |V_{ub}|$ need to rely on lattice f_B
 - \Rightarrow Useful constraints from unitarity/analyticity
 - \Rightarrow Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)
 - Deviations of "Grinstein-type double ratios" from unity are more suppressed:

$$\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D} \quad - \text{lattice: double ratio} = 1 \text{ within few \%}$$
 (Grinstein, '93)

$$\frac{B \to \rho \ell \bar{\nu}}{B \to K^* \ell^+ \ell^-} \times \frac{D \to K^* \ell \bar{\nu}}{D \to \rho \ell \bar{\nu}} \quad \text{-accessible soon?} \tag{ZL & Wise, '96}$$

- Less constraints from heavy quark symmetry than in $b \rightarrow c$
 - $\Rightarrow B \rightarrow \ell \bar{\nu}$ measures $f_B \times |V_{ub}|$ need to rely on lattice f_B
 - \Rightarrow Useful constraints from unitarity/analyticity
 - \Rightarrow Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)
 - Deviations of "Grinstein-type double ratios" from unity are more suppressed:

$$\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D} \quad - \text{lattice: double ratio} = 1 \text{ within few \%}$$

$$\frac{B \to \rho \ell \bar{\nu}}{B \to K^* \ell^+ \ell^-} \times \frac{D \to K^* \ell \bar{\nu}}{D \to \rho \ell \bar{\nu}} \quad - \text{accessible soon?}$$

$$\frac{B \to \ell \bar{\nu}}{B_s \to \ell^+ \ell^-} \times \frac{D_s \to \ell \bar{\nu}}{D \to \ell \bar{\nu}} \quad - \text{very clean... in a decade}$$
(Ringberg workshop, lots of beer, '03)

Soft-collinear effective theory

(Talks by Fleming & Pirjol)

• A new EFT to describe the interactions of energetic but low invariant mass particles with soft quanta ["the" connection between heavy quarks and jet physics?] ... Operator formulation instead of studying regions of Feynman diagrams ... Simplified and new proofs ($B \rightarrow D\pi$) of factorization theorems (Bauer, Pirjol, Stewart)

• E.g., $B \rightarrow \pi \ell \bar{\nu}$ form factor: Issues: tails of wave fn's, Sudakov suppression, etc.

Hope to understand accuracy of form factor relations in low q^2 region (Charles et al.)

$B ightarrow \pi \ell ar{ u}$ from lattice QCD

(Talks by Becirevic & Davies)

Present calculations are quenched Need unquenched to be model independent Few – 10% errors seem to be achievable Calculations in larger/full q^2 range may become possible (presently low p_{π}) $B \rightarrow \rho$ harder due to sizable Γ_{ρ}/m_{ρ}

$$|V_{ub}|$$
 — inclusive

The problem for $B o X_u \ell ar{ u}$

• Total rate known at ~ 5% level, similar to $\Gamma(B \to X_c \ell \bar{\nu})$ (Hoang, ZL, Manohar) $|V_{ub}| \sim \left[3.04 \pm 0.08_{m_b} \pm 0.08_{pert}\right] \times 10^{-3} \left(\frac{\mathcal{B}(B \to X_u \ell \bar{\nu})}{0.001} \frac{1.6 \text{ ps}}{\tau_{P}}\right)^{1/2}$

Can huge charm background ($|V_{cb}/V_{ub}| \sim 10$) be removed w/o phase space cuts?

 If cuts needed, life gets more complicated: perturbative and nonperturbative corrections can get a lot larger

E.g.: purely nonperturbative effects shift endpoint from $m_b/2$ to $m_B/2$

Back to the OPE: when should it converge?

• Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\rm QCD}$

Time ordered product short distance dominated if expansion in k converges:

$$\frac{1}{(m_b v - q + k)^2} = \frac{1}{(m_b v - q)^2 + 2k \cdot (m_b v - q) + k^2}$$

Need to allow:
$$m_X^2 \gg E_X \Lambda_{\rm QCD} \gg \Lambda_{\rm QCD}^2$$

OPE breaks down: m_X restricted to few $\times \Lambda_{QCD}$ (trivial — resonances) $m_X^2 \sim E_X \Lambda_{QCD}$ but $E_X \gg \Lambda_{QCD}$ (nontrivial — many states)

\Rightarrow Design cuts to avoid these regions

Inclusive $B o X_u \ell ar{ u}$ phase space

Possible cuts to eliminate $B \to X_c \ell \bar{\nu}$ background:

- Lepton spectrum: $E_{\ell} > (m_B^2 m_D^2)/2m_B$
- Hadronic mass spectrum: $m_X < m_D$
- Dilepton mass spectrum: $q^2 > (m_B m_D)^2$
- Combinations of cuts

FPCP 2003 June 5, Paris ZL — р. 18

$B o X_u \ell ar{ u}$ spectra

• Troubles come from the coincidence: $m_c^2 \approx m_b \times 400 \text{ MeV}$ $E_\ell > (m_B^2 - m_D^2)/2m_B \text{ or } m_X < m_D \text{ include } E_X \sim m_b/2 \implies m_X^2 \gg E_X \Lambda_{\text{QCD}}$

Large E_ℓ and small m_X regions

Bad: infinite set of terms in OPE equally important (shape function)Good: Fermi motion effects universal at leading order in Λ_{QCD}/m_b
related to $B \to X_s \gamma$ photon spectrum(Neubert; Bigi, Shifman, Uraltsev, Vainshtein)• $E_{\ell} > \frac{m_B^2 - m_D^2}{2m_B}$: NLO Sudakov logs resummed
Operators other than O_7 in $B \to X_s \gamma$
Terms unrelated to $B \to X_s \gamma$ sizable(Leibovich, ZL, Wise; Bauer, Luke, Mannel)

• $m_X < m_D$: lot more rate, but nonperturbative input formally still O(1)corrections smaller and inclusive description should be valid, but model dependence increases rapidly as m_X^{cut} lowered (Barger *et al.*; Falk, ZL, Wise; Bigi, Dikeman, Uraltsev)

NB: $\overline{\Lambda} \& \lambda_1$ (HQET) $\neq \overline{\Lambda} \& \lambda_1$ (shape function models), e.g., De Fazio & Neubert best would be to use $B \to X_s \gamma$ spectrum directly

Lepton endpoint vs. $B o X_s \gamma$

Sizable subleading twist effects

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y} = \frac{G_F^2 m_b^5 |V_{ub}|^2}{192 \,\pi^3} \left\{ y^2 (3-2y) \, 2\theta(1-y) - \frac{\lambda_2}{m_b^2} \left[11 \,\delta(1-y) - 2y^2 (6+5y)\theta(1-y) \right] - \frac{\lambda_1}{m_b^2} \left[\frac{1}{3} \,\delta'(1-y) + \frac{1}{3} \,\delta(1-y) - \frac{10}{3} \, y^3 \theta(1-y) \right] + \dots \right\}$$

Coefficient corresponding to **11** is **3** in $B \rightarrow X_s \gamma$

(Leibovich, ZL, Wise, PLB 539 242, 2002)

Weak annihilation (sub-subleading)

- Bad news: $\mathcal{O}(\Lambda_{\text{QCD}}^3/m_b^3)$ in rate, enhanced by $16\pi^2$... concentrated at large E_ℓ , q^2 , and small m_X^2
 - \Rightarrow enters all $|V_{ub}|$ extractions

Cancellation between: $\langle B | (\bar{b}\gamma^{\mu}P_L u) (\bar{u}\gamma_{\mu}P_L b) | B \rangle$ $\langle B | (\bar{b}P_L u) (\bar{u}P_L b) | B \rangle$

(Bigi & Uraltsev; Voloshin; Leibovich, ZL, Wise)

Estimated, with large uncertainty, as:

$$\mathcal{O}\left[16\pi^2 \times \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^3 \times \left(\begin{array}{c} \text{factorization} \\ \text{violation} \end{array}\right)\right] \sim 0.03 \left(\frac{f_B}{200 \,\text{MeV}}\right)^2 \frac{B_2 - B_1}{0.1}$$

If $\sim 3\%$ uncertainty in total rate, then $\sim 15\%$ in $|V_{ub}|$ from lepton endpoint, $\leq 10\%$ in $|V_{ub}|$ from large q^2 region, less for $m_X < m_D$ (more rate included)

• Constrain WA: compare D^0 vs. D_s SL widths, or V_{ub} from B^{\pm} vs. B^0 decay

Good: first few terms in OPE can be trusted full $\mathcal{O}(\alpha_s^2)$ result known

Bad: expansion is more like in $\Lambda_{
m QCD}/m_c$ and $lpha_s(m_c)$ than at scale m_b (Neubert '00)

• Combined $q^2 \& m_X$ cuts: more rate, scale goes up $m_c \Rightarrow \frac{m_b^2 - q_{cut}^2}{m_b \Lambda_{OCD}}$

Cuts on (q^2, m_X) included fraction
of $b \rightarrow u \ell \bar{\nu}$ rateerror of $|V_{ub}|$
 $\delta m_b = 80/30 \,\text{MeV}$ $6 \,\text{GeV}^2, m_D$ 46%8%/5% $8 \,\text{GeV}^2, 1.7 \,\text{GeV}$ 33%9%/6% $(m_B - m_D)^2, m_D$ 17%15%/12%

Strategy: (i) reconstruct $p_{\nu} \Rightarrow q^2, m_X$; make cut on m_X as large as possible (ii) for a given m_X cut, reduce q^2 cut to minimize overall uncertainty

Can get 30 - 40% of events, even with cuts away from $b \rightarrow c$ region

FPCP 2003 June 5, Paris

(Bauer, ZL, Luke '00)

(Bauer, ZL, Luke '01)

Summary for $|V_{ub}|$

- Total $B \to X_u \ell \bar{\nu}$ rate known precisely; phase space cuts seem unavoidable
- $E_{\ell} > (m_B^2 m_D^2)/2m_B$: simplest experimentally ... even using $B \to X_s \gamma$ spectrum, corrections are $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$... only ~ 10% of phase space — inclusive enough?
- $m_X^2 < m_D^2$: lots of rate but still sensitive to shape function ... uncertainties increase rapidly if cut is significantly below m_D
- $q^2 > (m_B m_D)^2$: no (leading) shape function, expansion formally in $\Lambda_{\rm QCD}/m_c$
- combined q^2 and m_X cuts: less rate than pure m_X cut, good theoretical control
- \Rightarrow Tricky business, need to measure $|V_{ub}|$ in as many clean ways as possible, confidence will be gained by convergence of extractions

Wishlist for $|V_{ub}|$

Experiment:

- get the cuts as close to the charm threshold as possible
- improve measurement of $B \to X_s \gamma$ photon spectrum (lower cut) and try to use it directly instead of through parameterizations
- constrain WA by comparing $|V_{ub}|$ from B^{\pm} vs. B^0 , or D^0 vs. D_s SL widths

Theory:

• full α_s^2 corrections (beyond $\alpha_s^2\beta_0$) known only for total rate and q^2 spectrum, not for other distributions

Both:

• precise determination of m_b — rate $\propto m_b^5$, even stronger sensitivity with cuts

Conclusions

Conclusions

- $|V_{cb}|$ is known at the $\sim 5\%$ level, error may soon become half of this inclusive: consistency of moments; exclusive: $\mathcal{F}_*(1)$ from unquenched lattice
- Model independent $\sim 10\% |V_{ub}|$ seems posible, ultimately similar to present $|V_{cb}|$ inclusive: neutrino reconstruction crucial; exclusive: needs unquenched lattice
- For both $|V_{cb}|$ and $|V_{ub}|$, important to pursue both inclusive and exclusive
- Progress in understanding exclusive heavy \rightarrow light form factors for $q^2 \ll m_B^2$ $B \rightarrow \pi/\rho \, \ell \bar{\nu}, \ K^* \gamma, \ K^{(*)} \ell^+ \ell^-$ below the $\psi \Rightarrow$ increase sensitivity to new physics ... related to issues in factorization in charmless decays
- Theoretical limit for inclusive $|V_{cb}|$ and $|V_{ub}|$ appear to be about $\sim 1\%$ and $\sim 5\%$

"Moments" — theoretical uncertainties

Define theoretical uncertainties, so it is not judged case-by-case and a posteriori Avoid large weight to an accurate measurement that cannot be computed reliably

• Unknown $1/m_b^3$ matrix elements — $\mathcal{O}(\Lambda_{\text{QCD}}^3)$ but no preferred value \Rightarrow add in fit:

$$\Delta \chi^{2}(m_{\chi}, M_{\chi}) = \begin{cases} 0, & |\langle \mathcal{O} \rangle| \le m_{\chi}^{3} \\ [|\langle \mathcal{O} \rangle| - m_{\chi}^{3}]^{2} / M_{\chi}^{6}, & |\langle \mathcal{O} \rangle| > m_{\chi}^{3} \end{cases}$$

Take $M_{\chi} = 0.5 \, {\rm GeV}$, and vary $0.5 \, {\rm GeV} < m_{\chi} < 1 \, {\rm GeV}$ _

- Uncomputed higher order terms estimate using naive dimensional analysis:
 - $(\alpha_s/4\pi)^2\sim 0.0003$
 - $(\alpha_s/4\pi)(\Lambda_{\rm QCD}^2/m_b^2) \sim 0.0002$
 - $\Lambda_{\rm QCD}^4/(m_b^2 m_c^2)\sim 0.001$

Use relative error: $\sqrt{(0.001)^2 + (\text{last-computed/2})^2}$

0.8

0.4

0.2

• Do fits both excluding (top) and including (bottom) BABAR data

$m_{\chi} \; [{\rm GeV}]$	χ^2	$ V_{cb} \times 10^3$	$m_b^{1S}\left[{ m GeV} ight]$
0.5	5.0	40.8 ± 0.9	4.74 ± 0.10
1.0	3.5	41.1 ± 0.9	4.74 ± 0.11
0.5	12.9	40.8 ± 0.7	4.74 ± 0.10
1.0	8.5	40.9 ± 0.8	4.76 ± 0.11

Sensitivity to m_{χ} is small ($1/m^3$ errors significant, but so are their correlations) BABAR data increases χ^2 /d.o.f. significantly — more later

Theoretical uncertainties important — neglecting them gives $\chi^2 = 81$ for 9 d.o.f. Including only $1/m^3$ terms gives $\chi^2 = 21$ for 5 d.o.f.; much better (but still bad) fit

Results in different mass schemes

tree level, $\mathcal{O}(\alpha_s)$, $\mathcal{O}(\alpha_s^2\beta_0)$

better convergence in 1S and PS schemes than in pole or $\overline{\rm MS}$

