Inclusive and Exclusive V_{cb} measurements

Marta Calvi Universitá di Milano Bicocca and INFN

FPCP 2003 Flavor Physics and CP Violation Paris, June 3-6, 2003

V_{cb} from exclusive decays $B_d^{\ 0} \rightarrow D^{(*)} \ell^- \nu$

$\frac{\ell^{-}}{\sigma \bar{q}} = 1$

D* boost in B⁰ rest frame

in the heavy quark limit ($m_0 \rightarrow \infty$), at zero recoil ($\omega = 1$)

<u>Strategy</u>: Mesaure $d\Gamma/d\omega$ and extrapolate to $\omega=1$

only one form factor $\mathcal{F}(1) \rightarrow \xi(1) = 1$

> Need to calculate corrections to $\mathcal{F}(1)$ to extract $|V_{cb}|$

$B_d^0 \rightarrow D^{*+} \ell^- \nu \text{ decays}$

Y(4S)

- \checkmark Good ω resolution
- ✓ Kinematical constraints help to reduce background
- ✓ Poor efficiency for low energy π_{soft}

Exclusive D^{*} decays reconstruction $D^* \rightarrow D\pi, D \rightarrow K\pi(\pi)$

Z⁰→bb

- \checkmark Lower ω resolution
- ✓ Background suppression more difficult
- \checkmark Fairly flat efficiency in ω (boosted π_{soft} $p_{\pi} \sim 1$ GeV)

Exclusive and inclusive D^{*} decays reconstruction

Inclusive and exclusive V_{cb} measurements

Use:

Marta Calvi (3)

$\boldsymbol{\omega}$ reconstruction

Efficiency

Delphi uses topological informations

and leave $\overline{B_d}^0 \rightarrow D^{*+} X \ \ell^- \nu$ free in the q² fit, obtaining: BR($\overline{B_d}^0 \rightarrow D^{*+} X \ \ell^- \nu$) = (0.64±0.08 ±0.09)% compatible with previous results

At LEP the composition of D** states is studied using *Leibovich,Ligeti,Stewart,Wise* model and the maximum variation of parameters compatible with available BR's measurements

Extrapolation: form factor shape

• Expansion around $\omega = 1$ up to second order:

$$\mathcal{F}(\omega) = \mathcal{F}(1)[1 - \rho_F^2(\omega - 1) + c_F(\omega - 1)^2 + ...]$$

• Use dispersive relations to constraint the shape

Relate $\mathcal{F}(\omega)$ to the axial vector form factor $h_{A_1}(\omega)$ and ratios of HQET form factors $R_1(\omega)$, $R_2(\omega)$ Expand: $h_{A_1}(\omega) \approx h_{A_1}(1)[1-8\rho_A^2 z + (53\rho_A^2 - 15)z^2 - (231\rho_A^2 - 91)z^3]$ with: $z = (\sqrt{\omega+1} - \sqrt{2})/(\sqrt{\omega+1} + \sqrt{2})$ $(\sqrt{\omega+1} + \sqrt{2})$ Fit for $\mathcal{F}(1)|V_{ch}|$ and ρ_A^2

R₁,R₂ calculated using QCD sum rules

 $\mathsf{R}_{1}(\omega) \approx 1.27 - 0.12(\omega - 1) + 0.05(\omega - 1)^{2} \qquad \mathsf{R}_{2}(\omega) \approx 0.80 + 0.11(\omega - 1) - 0.06(\omega - 1)^{2}$

or measured by CLEO: $R_1(1)=1.18\pm0.30\pm0.12$ $R_2(1)=0.71\pm0.22\pm0.07$

 R_1,R_2 uncertainty is the major source of systematics on ρ_A^2 , which should improve with future new measurements

$d\Gamma/d\omega$ fits

Inclusive and exclusive V_{cb} measurements

$\mathcal{F}(1)|V_{cb}|$ word average

 $\mathcal{F}(1)|V_{cb}| = (38.8 \pm 0.5_{stat} \pm 0.9_{syst}) \times 10^{-3}$ $\rho_A^2 = 1.54 \pm 0.05_{stat} \pm 0.13_{syst}$

corr($\mathit{F}(1)|V_{cb}|,\,\rho^2$)=0.52

T(1) = ?

Need non-perturbative QCD calculations to correct $\mathcal{F}(1) = 1 \quad (m_Q \rightarrow \infty)$

$V_{cb} \text{ from } \overline{B_d^0} \rightarrow D^+ \ell^- \nu$ decays

D⁺ vs D*

$$> BR(B_d^0 \rightarrow D\ell^-\nu) ~~ \frac{1}{4} ~ BR(B_d^0 \rightarrow D^*\ell^-\nu)$$

$$> d\Gamma_D/d\omega \sim (1-\omega)^{3/2} ; ~ d\Gamma_{D^*}/d\omega \sim (1-\omega)^{1/2}$$

- Larger combinatoric backgound but no slow pion involved in the decay
- $> 1/m_Q$ corrections to G(1) are not zero
- However it provides a consistency check and allows test of theory

$V_{cb} \text{ from } \overline{B_d^0} \rightarrow D^+ \ell^- \nu$

V_{cb} from inclusive decays

 $\Gamma_{sl} (b \to c \ell^- \overline{\nu}) = \gamma_{th} |V_{cb}|^2 = \frac{BR (b \to c \ell^- \overline{\nu})}{\tau_b}$ Theory with perturbative and non-pert. corrections PDG2002 $\Delta |V_{cb}| \sim 5\%$ Y(4S), LEP, SLD, CDF measurementsLot of data --> Experimental $\Delta |V_{cb}| \sim 1\%$

> γ_{th} evaluated using OPE expansion in α_s and $1/m_b$ powers: $O(1/m_b) \rightarrow 1$ parameter: Λ $O(1/m_b^2) \rightarrow 2$ parameters: $\lambda_1(\mu_{\pi}^2), \ \lambda_2(\mu_G^2)$

 $O(1/m_b^3) \rightarrow 6 \text{ more parameters: } \rho_1, \rho_2, \mathcal{T}_{1-4} \ (\rho_D^3, \rho_{LS}^3)$

Use other measurements of inclusive variables \implies spectral moments E_{γ} , M_{χ}^2 , E_{ℓ} to

- Test OPE predictions and underlying assumptions (quark-hadron duality)
- ✤ Constrain the unknown non-perturbative parameters and reduce $|V_{cb}|$ uncertainty

Inclusive BR(B \rightarrow X_c $\ell^-\nu$) and $\tau_{\rm B}$

Word average

$\Gamma_{B \to X_c \ell^- \nu} = 0.441 \ (1 \pm 0.018) \ x 10^{-10} \ MeV$

Parameter Extraction from CLEO data and V_{cb}

First derivations of OPE parameters from spectral moments used the pole mass expansion

$$\Gamma_{SL} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \left(c_0 + \frac{1}{m_B} c_1(\overline{\Lambda}) + \frac{1}{m_B^2} c_2(\overline{\Lambda}, \lambda_1, \lambda_2) + \frac{1}{m_B^3} c_3(\overline{\Lambda}, \lambda_1, \lambda_2, \rho_1, \rho_2, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4) + O(\frac{1}{m_B^4}) \right)$$

And photon energy spectrum in $B \rightarrow X_s \gamma$, hadronic mass spectrum and lepton energy spectrum in $B \rightarrow X_c \ell \nu$ measured by CLEO with a minimum energy cut ($E_{\gamma} > 2$. GeV, $p_{\ell} > 1.5$ GeV/c)

Parameter Extraction from CLEO data and V_{cb}

Using $\Gamma_{sl} = (0.441 \pm 0.008) \times 10^{-10} \text{ MeV}$

Variation of input parameters: α_s , λ_2 , ρ_1 , ρ_2 , T_{1-4} uncertainty due to higher order terms in the perturbative and non-perturbative terms not included

Moments of lepton energy spectrum and hadronic mass spectrum in Z \rightarrow bb events

First measurements of moments performed at LEP exploiting advantage of Z⁰ kinematics:

- Large momentum of b-hadrons (E_B~30 GeV) gives sensitivity to full lepton energy spectrum in B rest frame
- However: less statistics need to reconstruct the B system

Measure first, second and third moment

Lepton spectrum in $B \rightarrow X_c \ell \neg v$

DELPHI'02-071, ICHEP02

B system reconstructed from lepton+neutrino+charm vertex

Hadronic mass spectrum

DELPHI'02-070, ICHEP02

$B_d^0 \rightarrow D^{**} \ell^- \nu$ decays exclusively reconstructed

 $\Delta_{M} = M(D^{(*)}\pi) - M(D^{(*)}) \text{ distributions fitted including contributions of resonant (narrow, broad) and non resonant states, D*X <math>\ell^{-}\nu$ floating BR(B⁰ \rightarrow D^{**} $\ell^{-}\nu$)=(2.6 ±0.5 ±0.4) %

From measured D** mass derive $\langle M^{n}_{X} \rangle = p_{D}M^{n}_{D} + p_{D*}M^{n}_{D*} + (1-p_{D}-p_{D*}) \langle M^{n}_{D**} \rangle$

First three moments:

Non-perturbative parameter extraction with low scale running quark masses approach

Another OPE formalism makes use of low scale running quark masses and does not rely on a $1/m_c$ expansion *(Bigi,Shifman,Uraltsev and Vainshtein)*

$$M_{n}(E_{l}) = \left(\frac{m_{b}}{2}\right)^{n} \left(\varphi_{n}(r) + a_{n}(r)\frac{\alpha_{s}}{\pi} + b_{n}(r)\frac{\mu_{\pi}^{2}}{m_{b}^{2}} + c_{n}(r)\frac{\mu_{G}^{2}}{m_{b}^{2}} + d_{n}(r)\frac{\rho_{D}^{3}}{m_{b}^{3}} + s_{n}(r)\frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots\right) \qquad r = \frac{m_{c}^{2}(\mu)}{m_{b}^{2}(\mu)}$$

 $m_b(\mu), m_c(\mu)$ are independent parameters and two operators only contribute to $1/m_b{}^3$ corrections : $\rho_D{}^3, \, \rho_{LS}{}^3$

First applied to fit preliminary Delphi data Phy.Lett B556(2003)41

 Multi-parameter χ² fit to first three moments of lepton energy spectra and hadronic mass spectra Higher moments used to get sensitivity to 1/m_b³ parameters

- Use expressions for non-truncated lepton spectra
- Simultaneous use of leptonic and hadronic moments in order to leave enough free parameters in the fit

Multi-parameter fit to DELPHI data

Good consistency of all measurements (χ^2 /d.o.f.=0.96) Within present accuracy no need to introduce higher order terms to establish agreement with data $\bullet \text{The mass expansion:} \qquad M_{H_{\varrho}} = m_{\varrho} + \overline{\Lambda} + \frac{\mu_{\pi}^2 - \mu_G^2}{2m_{\varrho}^2} + \frac{\rho_D^3 + \rho_{LS}^3 - \rho_{nl}^3}{4m_{\varrho}^2} + O(\frac{1}{m_{\varrho}^3})$ is not used in the fit. Provide a posteriori test: $\overline{\Lambda}(B) - \overline{\Lambda}(D) = -0.086 \pm 0.092$

* Repeating the multi-parameter fit in the pole mass expansion:

Good consistency of all measurements. Results compatible with CLEO.

Similar results with $m_b^{1S}-\lambda_1$ formalism applied to CELO and DELPHI data *C.W.Bauer, Z.Ligeti, M.Luke, A.V.Manohar hep-ph/0210027*.

Derivation of inclusive V_{cb}

• V_{cb} dependence on non-perturbative parameters in the running quark mass scheme: *N.Uraltsev* hep-ph/0302262

$$\begin{split} |V_{cb}| &= |V_{cb}|_0 \; \{1 - 0.65[\; m_b(1) - 4.6 \; \text{GeV}] + 0.40 \; [m_c(1) - 1.15 \; \text{GeV}] \\ &+ 0.01[\; \mu_\pi^2 - 0.4 \; \text{GeV}^2] + 0.10 \; [\; \rho_D^3 \; - 0.12 \; \text{GeV}^3] \\ &+ 0.05[\; \mu_G^2 - 0.35 \text{GeV}^2] - 0.01 \; [\; \rho_{LS}^3 + 0.15 \; \text{GeV}^3] \; \} \end{split}$$

- First moments $M_1(M_{\chi})$, $M_1(E_{\ell})$ are both sensitive to the same combination of masses ~ $(m_b-0.65 m_c)$ present in V_{cb}
- Using the word average $\Gamma_{\rm sl}$:

Conclusions: Exclusive / Inclusive

$|V_{cb}|$ from exclusive B decays

★ Large statistics on $B_d^{0} \rightarrow D^{(*)} \ell^- \nu$ available and new measurements are coming

Present precision (5%) is systematics limited:

Experiments: D** states, D's BR Theory: form factor extrapolation, corrections to $\mathcal{F}(1)=1$ can be reduced in the future

$|V_{cb}|$ from inclusive B decays

- ***** Experiment: large statistics on BR($B \rightarrow X_c \ell^- \nu$) and τ_B and small systematics
- Major limit from possible quark-hadron duality violation?

From measurements on spectral moments no evidence of violation effects, at the level of present sensitivity. Derived constraints on non-perturbative parameters reduce the uncertainty on $|V_{cb}|$ to ~2.2%

✤ Future results on moments from B-factories can farther improve the picture.

Conclusions: results

Good precision measurements on V_{cb} are available, both from exclusive and inclusive semileptonic B decays.

They are a fundamental input to CKM matrix determinations:

$$|V_{cb}|^{excl} = (42.6 \pm 1.2_{exp} \pm 1.9_{theo}) \times 10^{-3}$$

$$|V_{cb}|^{incl} = (41.9 \pm 0.7_{exp} \pm 0.6_{theo}) \times 10^{-3}$$

Systematics

BELLE

CLEO

PHYSICAL REVIEW D 67, 032001 (2003)

	Combined fit					
Source	$ V_{cb} \mathcal{F}(1)$	$ ho^2$	Γ			
Backgrounds	1.8	3.1	1.7			
Reconstruction efficiency	2.9	3.2	4.6			
B momentum & mass	0.1	0.1	0.2			
$\overline{B} \to D^* X \ell \overline{\nu} \mod$	0.3	1.6	0.9			
Final-state radiation	0.7	0.3	1.1			
Number of $B\overline{B}$ events	0.9	0.0	1.8			
τ_B and branching fractions	1.8	0.0	3.5			
$R_1(1)$ and $R_2(1)$	1.4	12.0	1.8			
Total	4.3	13.0	6.6			

	-	
Error sources	$ V_{cb} F(1)(\%)$	$ ho_{A_1}^2$ (%)
$N_{B\overline{B}}$	0.5	_
$\tau_{\overline{B}0}$	1.0	_
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.4	_
$\mathcal{B}(D^0 \to K^- \pi^+)$	1.2	_
Tracking efficiency	2.5	_
Electron ID efficiency	1.0	_
D^0 reconstruction efficiency	1.4	_
Slow pion efficiency	2.6	1.2
Subtotal	4.3	1.2
y resolution	1.1	2.8
Combinatorial BG	1.0	0.1
Correlated BG (D^{**})	1.4	4.0
Uncorrelated BG	0.4	0.5
Fake electron BG	_	0.2
Continuum BG	0.5	2.9
MC statistics	1.7	4.4
$R_1(1), R_2(1)$	1.1	11.8
Subtotal	2.9	13.7
Total	5.2	13.8

Systematics

LEP

	$\frac{\Delta F(1) V_{cb} }{F(1) V_{cb} }$			$\Delta \rho_{A_1}^2$				
Source	A _{ex}	c Dine	_c O _{inc}	O_{exc}	Aexe	Dinc	Oinc	O_{exc}
Correlated errors								
$\Gamma_{b\overline{b}}/\Gamma_{had}$	0.2	0.3	0.2	0.2	-	-	-	-
$BR(b \rightarrow \overline{B_d^0})$	1.1	1.8	1.3	1.3	-	0.02	-	-
$BR(D^{*+} \rightarrow D^0 \pi^+)$	0.4	0.4	0.4	0.4	-	0.01	-	-
$BR(D^0 \rightarrow K^+\pi^-)$	0.6	-	-	0.3	-	-	-	0.01
$BR(D^0 \to K3\pi)$	1.3	-	-	-	-	-	-	-
$BR(D^0 \rightarrow K^0 2\pi)$	0.6	-	-	-	-	-	-	-
$BR(D^0 \rightarrow K^+ \pi^- \pi^0)$	-	-	-	2.6	-	-	-	0.02
$BR(D \rightarrow Kn\pi)$	-	0.2	-	-	-	-	-	-
D ^{**} rate	0.9	1.5	0.4	0.7	0.02	0.07	0.03	0.05
D ^{**} shape	1.0	5.3	4.1	1.0	0.06	0.19	0.15	0.13
$B^- \rightarrow D^* X_c$	0.3	0.2	0.3	0.2	-	0.01	0.01	-
$B^- \rightarrow D^* \tau \bar{\nu}$	0.1	0.2	0.1	0.1	-	-	-	-
Fragmentation	0.9	1.0	1.0	0.5	0.01	-	0.11	-
$\tau_{\rm b}$ lifetime	0.9	0.9	0.7	0.6	-	-	-	-
R_1 and R_2	2.4	1.1	1.0	1.0	0.4	0.3	0.2	0.2
Uncorrelated errors								
Combinatorial and fake D ⁰	1.1	0.5	-	1.2	-	0.07	-	0.01
Fake lepton	0.7	-	1.2	0.2	-	-	-	-
ℓ efficiency/modelling	0.7	1.1	-	1.2	-	0.03	-	-
Selection efficiency/modelling	1.2	2.6	2.9	3.6	0.02	0.08	0.12	0.01
MC statistics	1.6	0.2	-	-	0.05	-	-	-
w resolution	1.5	2.1	2.2	1.4	0.07	0.07	0.12	0.035
Total Systematic	4.0	7.2	6.0	4.8	0.41	0.36	0.35	0.24
Statistical	6.5	4.0	3.5	4.5	0.25	0.14	0.15	0.21