Inclusive and Exclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Measurements

Edward H. Thorndike
University of Rochester CLEO

FPCP 2003
6/5/2003

Methods for Determining $\left|V_{u b}\right|$

Inclusive:
Lepton Endpoint
$\mathrm{M}_{\mathrm{X}}<\mathrm{M}_{\mathrm{D}},\left(\mathrm{q}^{2}>7 \mathrm{GeV}^{2}\right)$
Inclusive measurements are over 3D space,

$$
\text { e.g., } \mathrm{E}_{\text {lep }}, \mathrm{q}^{2}, \mathrm{M}_{\mathrm{X}} .
$$

Sensitivity can be:
uniform, over sharply defined subspace (good)
varying, over ill-defined subspace (bad)

Exclusive:
 B 미

- Systematic errors dominate - ALWAYS
- Typically they involve theoretical uncertainties.

If objective assessment of dominant systematic errors cannot be made don't use that measurement.

Lepton Endpoint Analysis

- For B mesons at rest, the maximum lepton momentum in $B \square \quad \mathrm{X}_{\mathrm{u}} 1 \square$ is

$$
\left(\mathrm{M}_{\mathrm{B}}^{2}-\mathrm{M}_{\square}^{2}\right) / 2 \mathrm{M}_{\mathrm{B}}=2.64 \mathrm{GeV} / \mathrm{c} .
$$

- For $\mathrm{B} \square \mathrm{X}_{\mathrm{c}} 1 \square$ it is

$$
\left(\mathrm{M}_{\mathrm{B}}^{2}-\mathrm{M}_{\mathrm{D}}^{2}\right) / 2 \mathrm{M}_{\mathrm{B}}=2.31 \mathrm{GeV} / \mathrm{c} .
$$

- For B's in the (4 s) rest frame, these cutoffs are smeared $\pm 150 \mathrm{MeV} / \mathrm{c}$.
- Thus, the yield of leptons above $\sim 2.2 \mathrm{GeV} / \mathrm{c}$ will be substantially enhanced in $b \square$ ul \square leptons

Lepton Endpoint Analysis - cont'd

a) Pick a lepton momentum cut. (e.g. $2.2 \mathrm{GeV}, 2.4 \mathrm{GeV}$)
b) Measure yield of leptons above the cut, On (4s), Below (4s).
c) Subtract Below from On.
d) Determine contribution from $\mathrm{b} \square \mathrm{cl} \square$, subtract that also.
e) Extrapolate from $\mathrm{b} \square$ ul \square yield above cut to total $\mathrm{b} \square$ ul \square yield.
f) Obtain $\left|V_{u b}\right|$ from total $b \square$ ul \square yield.

Problem: Continuum background is huge, requires continuum suppression cuts. These can (in earlier measurements did) introduce q^{2} dependence to efficiency
Problem: Extrapolation from yield above cut to total yield - used to be done with models.

CLEO's Latest Endpoint Analysis

PRL 88, 231803, 2002
$9.1 \mathrm{fb}^{-1}$ On (4s), $4.35 \mathrm{fb}^{-1}$ Below

- Continuum suppression - energy distribution relative to lepton direction, excluding 25° cone away from lepton. Reduced dependence of efficiency on q^{2}, compared to previous analyses (factor of 3 less model dependence, now 30% fall-off in efficiency from high q^{2} to low q^{2})
- Extrapolation from yield above cut to total yield - Done using CLEO's photon energy spectrum for $b \square \mathrm{~s} \square[\mathrm{~b} \square \mathrm{ul} \square$ and $\mathrm{b} \square \mathrm{s} \square$ both $\mathrm{b} \square$ light, are governed by same light cone shape function]
- Kagan, Neubert, deFazio, Leibovich, Low, Rothstein

B \square light quark shape function, SAME (to lowest order in $\square_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}$) For $\mathrm{b} \square s \square \Rightarrow \mathrm{~B} \square \mathrm{X}_{s} \square$ and $b \square u 1 \square \Rightarrow \mathrm{~B} \square \mathrm{X}_{u} 1 \square$.

Convolute with light cone shape function.

CLEO's Latest Endpoint Analysis

Endpoint Results

$p(\mathrm{GeV} / c)$	$\left\|\mathrm{V}_{u b}\right\|\left(10^{-3}\right)$
$2.0-2.6$	$3.90 \pm 0.84 \pm 0.35 \pm 0.22 \pm 0.12$
$2.1-2.6$	$3.98 \pm 0.46 \pm 0.40 \pm 0.22 \pm 0.16$
$2.2-2.6$	$4.11 \pm 0.34 \pm 0.44 \pm 0.23 \pm 0.24$
$2.3-2.6$	$4.30 \pm 0.24 \pm 0.47 \pm 0.24 \pm 0.34$
$2.4-2.6$	$4.08 \pm 0.28 \pm 0.45 \pm 0.23 \pm 0.45$

BaBar: 2.3-2.6 ICHEP 02
$4.43 \pm 0.29 \pm 0.50 \pm 0.25 \pm 0.35$
yield

Endpoint Results

The LEP Analyses

```
ALEPH Eur. Phys. J. C 6, }555\mathrm{ (1999)
OPAL Eur. Phys. J. C 21, }399\mathrm{ (2001)
DELPHI Phys. Lett. B 478, }14\mathrm{ (2000)
L3 Phys. Lett. B 436, 174 (1998)
```

Approaches have similarities, differences:

- Each has a few million hadronic Z° decays
- Select $Z^{\circ} \square$ b \bar{b}, with a lepton
- Find variables that distinguish between $b \square$ ul \square and $b \square c$
- Feed into neural net and fit the distribution in the net output (ALEPH, OPAL)

> OR

- Cut on variables, count yield; subtract b \square c backgrounds (DELPHI, L3)

The LEP Analyses - cont'd

LEP Average:

Comments:

- b \quad c backgrounds large (5-20x signal), so systematic error from
$\mathrm{b} \square \mathrm{c}$ modelling important (re-evaluate using current knowledge?)
- Efficiency (DELPHI, L3), or sensitivity (ALEPH, OPAL) varies over $E_{\text {lep }}, q^{2}, M_{X}{ }^{2} 3 D$ phase space, so hard to evaluate determination of systematic error from $b \square \mathrm{ul} \square$ modelling.
- Systematic error from $\mathrm{b} \square \mathrm{ul} \square$ modelling needs to be reevaluated using contemporary techniques, e.g. light-cone shape function, with parameter range as given by $b \square \mathrm{~s} \square$ photon energy spectrum.

Belle

Belle has recently obtained $\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} 1 \square\right)$ via two novel approaches - "D(*) \square tag" and "Advanced \square Reconstruction"

85 million $\mathrm{B} \overline{\mathrm{B}}$ events used in each

- $\mathrm{D}^{(*)} \square$ tag: $\mathrm{B}_{1} \square \mathrm{D}^{(*)} 1_{1} \square_{1}, \mathrm{~B}_{2} \square \mathrm{Xl}_{2} \square_{2}$
- If one detects $\mathrm{D}^{(*)}$ and 1_{1}, then the constraint

$$
m_{\nu_{1}}^{2}=\left(P_{B_{1}}^{\mu}-P_{D^{(*)} \ell_{1}}^{\mu}\right)^{2}=0 \Rightarrow \cos \theta_{B_{1}-D^{(*)} \ell_{1}}
$$

- If the other B decays $\mathrm{B}_{2} \square \mathrm{Xl}_{2} \square_{2}$, then the constraint

$$
m_{\nu_{2}}^{2}=\left(P_{B_{2}}^{\mu}-P_{X \ell_{2}}^{\mu}\right)^{2}=0 \Rightarrow \cos \theta_{B_{2}-X \ell_{2}}
$$

- If one has things right, the two cones will intersect. (B_{1} and B_{2} are back-to-back)

Belle - $\mathrm{D}^{(*)}{ }^{1} \square$ tag, cont'd

- If one has things right, the two cones will intersect. (B_{1} and B_{2} are back-to-back)
- So: Require that cones intersect (or almost do)
- Require $\operatorname{Net} \mathrm{Q}=0$
- Require X contain no $\mathrm{K}^{ \pm}$
- Require $\mathrm{M}_{\mathrm{X}}<1.5 \mathrm{GeV}, \mathrm{P}_{1}>1.0 \mathrm{GeV} / \mathrm{c}$
- $\mathrm{S} / \mathrm{N} \approx 1: 2$
- Subtract b \square c contribution
$\square \mathrm{b} \square \mathrm{ul} \square$ signal
$\left|\mathrm{V}_{\mathrm{ub}}\right|=(5.00 \pm 0.60 \pm 0.23 \pm 0.05 \pm 0.39 \pm 0.36) \square 10^{-3}$ (Prelim)

? How does efficiency vary over $\mathrm{M}_{\mathrm{X}}, \mathrm{q}^{2}, \mathrm{E}_{\text {lep }}$?

IVubl through $\mathrm{D}\left(^{*}\right)$ | v tag: Mx distribution for Xulv signal

Belle - Advanced \square Reconstruction

- Select events with signal B decaying semileptonically, and tag B decaying hadronically
- By magic, sort all particles into those belonging to $\operatorname{tag} \mathrm{B}$, and those belonging to signal B
- "Annealing", S. Kirkpatrick et al., Science 220, 4598
 (1983)
- Make cuts to throw out events that have annealed poorly.

Belle - Advanced \square Recon, cont'd

- Now, knowing which particles belong to signal B, calculate q^{2}, M_{X}, with good resolution.
- Require $\mathrm{M}_{\mathrm{X}}<1.5 \mathrm{GeV}, \mathrm{q}^{2}>7 \mathrm{GeV}^{2}$
- Estimate $\mathrm{b} \square \mathrm{c}$ background, subtract, count. $\mathrm{S} / \mathrm{N}=0.27,1148$ signal events

$$
\begin{gathered}
\mid \mathrm{V}_{\mathrm{ub}} \mathrm{I}=(3.96 \pm \underset{\uparrow}{0.17} \pm \underset{\uparrow}{0.44} \pm 0.34 \pm 0.26 \pm 0.29) \square 10^{-3} \\
\text { stat } \begin{array}{c}
\text { sys } \\
\text { b } \square \mathrm{c}
\end{array} \mathrm{~b} \square \mathrm{u} \text { theor. }
\end{gathered}
$$

? How does efficiency vary over $\mathrm{M}_{\mathrm{X}}, \mathrm{q}^{2}, \mathrm{E}_{\text {lep }}$?

|Vubl through Advanced v recon: $M x, q^{2}$ distribution

BaBar - $\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} 1 \square\right)$, Inclusive

88 million $\mathrm{B} \overline{\mathrm{B}}$ pairs
Fully reconstruct one B.
Study semileptonic decay of other B.

Try MANY B decay modes - over 1100!
Use the relatively clean modes (purity $>9 \%$ to 24%).
Keep 0.3% of $\mathrm{B}^{0} \overline{\mathrm{~B}}^{0}$ events, 0.5% of $\mathrm{B}^{+} \mathrm{B}^{-}$events
— 350,000 events with one B reconstructed

BaBar - $\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} 1 \square\right)$, Inclusive, cont'd

Now require high momentum lepton ($\mathrm{P}>1.0 \mathrm{GeV} / \mathrm{c}$) from other B. 30 K events, purity 67%

Interest is in B $\square \mathrm{XI} \square$

- X - all particles not used for fully reconstructed B
- \square - from missing 4-momentum
- Kinematic fit \square M_{X} to $\pm 350 \mathrm{MeV}$.

BaBar - $\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} \mathrm{l} \square\right)$, Inclusive, cont'd

Clean up cuts

- Net charge $=0$, only one lepton above $1.0 \mathrm{GeV} / \mathrm{c}$, $\mathrm{m}_{\text {miss }}^{2}$ small. Improves M_{X} resolution
- $\mathrm{No} \mathrm{K}^{ \pm}$or $\mathrm{K}_{\mathrm{s}}{ }^{0}$ in X, D*1 partial reconstruction veto, Suppresses b \square cl \square

For $\mathrm{M}_{\mathrm{X}}<1.55 \mathrm{GeV}, \mathrm{S} / \mathrm{N}=2: 1$ - impressive!

BaBar - $\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} 1 \square\right)$, Inclusive, cont'd

Fit M_{X} distribution

- Region for $\mathrm{M}_{\mathrm{X}}>1.55$ fixes $\mathrm{b} \square \mathrm{cl} \square$, allows extrapolation to $\mathrm{M}_{\mathrm{X}}<1.55$
- Region for $\mathrm{M}_{\mathrm{X}}<1.55$, with $\mathrm{b} \square \mathrm{cl} \square$ subtracted, gives $\mathrm{b} \square \mathrm{ul}$]
- Because S / N is so good, systematic error from modelling $\mathrm{b} \square \mathrm{c}$ backgrounds is small.
- Systematic errors from modelling b \square ul \square are not small. They are evaluated by varying HQET parameters \square and \square_{1} within their errors, as determined by CLEO.

BaBar $-\operatorname{Br}\left(\mathrm{B} \square \mathrm{X}_{\mathrm{u}} 1 \square\right)$, Inclusive

Results:

$$
\begin{aligned}
& \left|V_{u b}\right|=(4.62 \pm 0.28 \pm 0.27 \pm 0.40 \pm 0.26) \times 10^{-3}
\end{aligned}
$$

Exclusive b \square ul \square Measurements

- All measurements "detect" the \square via the missing 4-momentum in the event.
- (2.) and (3.) suppress b $\square \mathrm{cl} \square$ background by (effectively) requiring $P_{\text {lep }}>2.3 \mathrm{GeV} / \mathrm{c}$.
- (1.) is superseded by (4.)

CLEO's Latest Exclusive Analysis

9.7 million $\mathrm{B} \overline{\mathrm{B}}$ pairs

Split data into $3 \mathrm{q}^{2}$ intervals Reduces model dependence

Lower lepton momentum cut:

$$
\begin{aligned}
& \mathrm{P}_{\text {lep }}>1.0 \mathrm{GeV} / \mathrm{c} \text { for } \square \\
& \mathrm{P}_{\text {lep }}>1.5 \mathrm{GeV} / \mathrm{c} \text { for } \square
\end{aligned}
$$

Reduces model dependence

$\mathcal{B}\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right)=$
$\left(2.17 \pm 0.34 \pm_{-0.54}^{+0.47} \pm 0.01 \pm 0.41\right) \times 10^{-4}$

CLEO'S Latest Exclusive Analysis, cont'd

Obtaining $\left|\mathrm{V}_{\mathrm{ub}}\right|$

For $0<\mathrm{q}^{2}<16 \mathrm{GeV}^{2}$, use light-cone sum rules
For $16 \mathrm{GeV}^{2}<\mathrm{q}^{2}<\mathrm{q}_{\max }{ }^{2}$, use lattice QCD
Combine the two results

$\left\|\mathrm{V}_{\text {ub }}\right\|\left(10^{-3}\right)$	
$\square 1]$	$3.24 \pm 0.22 \pm 0.13{ }_{-0.39}^{+0.55} \pm 0.09$
$\square 1$	$3.00 \pm 0.21{ }_{-0.35}^{+0.29}{ }_{-0.38}^{+0.49} \pm 0.28$
Combined	$3.17 \pm 0.17 \pm 0.17{ }_{-0.39}^{+0.53} \pm 0.03$
	$\hat{\text { stat }}$ $\hat{\text { exp }}$ sys $\hat{\text { theo }}$ $\hat{\eta} \hat{\text { fhape }}$

Averaging - ?!?

Simple averages of these measurements:
Means: 4.03
Exclusive: 3.35
Inclusive: 4.37
Errors: ± 0.66
r.m.s. spread of means ± 0.61

No evidence of any problem.
(Weak hint of exclusive/inclusive difference)

Averaging - ?!?

Q. Can't one, shouldn't one, combine all the existing measurements of $\left|\mathrm{V}_{\mathrm{ub}}\right|$, taking into account correlated errors?
A. Maybe not. It looks like a nightmare to me.

- Partially correlated errors, that must be treated in a consistent fashion
- Model of ble, for backgrounds
- Model of blull, for signal
- The "unquantifiable errors"
- Higher twist, power correction from non-local operators
- Local quark-hadron duality

Maybe it would be better to include only those measurements that have uniform sensitivity over a well-defined region of phase space.

Closing Comments

Exclusives
"Soon" there will be unquenched lattice QCD calculations for B $\quad \square 1 \square$, over the full q^{2} range, accurate to $\sim \pm 10 \%$ in rate, therefore $\pm 5 \%$ in $\mid \mathrm{V}_{\mathrm{ub}} \mathrm{l}$. Experiment (CLEO, $9.7 \mathrm{M} \mathrm{B} \overline{\mathrm{B}}$) already gives $\mathrm{Br}(\mathrm{B} \square \square \mathrm{l}$) to $\pm 17 \%$, with statistical errors 1.4 times the sum of the systematic ones. A 12% measurement in rate is possible with data already taken by BaBar , Belle.

A very promising route to $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to $< \pm 10 \%$.
Inclusives
The best way to get systematic error from modelling of B $\square X_{u} 1 \square$ is from shape function, obtained from photon energy spectrum from $B \square X_{s} \square$
— Need a second measurement of the spectrum, down to 2.0 GeV at least, preferably 1.5 GeV .

