Inclusive and Exclusive |V_{ub}| Measurements

Edward H. Thorndike University of Rochester CLEO

> FPCP 2003 6/5/2003

Methods for Determining $|V_{ub}|$

Inclusive:

Lepton Endpoint $M_X < M_D$, (q² > 7 GeV²)

Inclusive measurements are over 3D space, e.g., E_{lep} , q^2 , M_X .

Sensitivity can be:

uniform, over sharply defined subspace (good) varying, over ill-defined subspace (bad)

 $\frac{\text{Exclusive:}}{B \rightarrow \pi l \nu}$ $B \rightarrow \rho l \nu$

- Systematic errors dominate ALWAYS
- Typically they involve theoretical uncertainties.
- If objective assessment of dominant systematic errors cannot be made don't use that measurement.

Lepton Endpoint Analysis

• For B mesons at rest, the maximum lepton momentum in $B \rightarrow X_u lv$ is

 $(M_B^2 - M_\pi^2)/2M_B = 2.64 \text{ GeV/c.}$

• For $B \rightarrow X_c lv$ it is

 $(M_B^2 - M_D^2)/2M_B = 2.31 \text{ GeV/c}.$

- For B's in the Y(4s) rest frame, these cutoffs are smeared ± 150 MeV/c.
- Thus, the yield of leptons above ~ 2.2 GeV/c will be substantially enhanced in b → ulv leptons

Lepton Endpoint Analysis - cont'd

- a) Pick a lepton momentum cut. (e.g. 2.2 GeV, 2.4 GeV)
- b) Measure yield of leptons above the cut, On $\Upsilon(4s)$, Below $\Upsilon(4s)$.
- c) Subtract Below from On.
- d) Determine contribution from $b \rightarrow clv$, subtract that also.
- e) Extrapolate from $b \rightarrow u l v$ yield above cut to total $b \rightarrow u l v$ yield.
- f) Obtain $|V_{ub}|$ from total b \rightarrow ulv yield.

Problem: Continuum background is huge, requires continuum suppression cuts. These can (in earlier measurements did) introduce q² dependence to efficiency

Problem: Extrapolation from yield above cut to total yield - used to be done with models.

CLEO's Latest Endpoint Analysis

PRL 88, 231803, 2002

9.1 fb⁻¹ On $\Upsilon(4s)$, 4.35 fb⁻¹ Below $\Upsilon(4s)$

- Continuum suppression energy distribution relative to lepton direction, excluding 25° cone away from lepton. Reduced dependence of efficiency on q², compared to previous analyses (factor of 3 less model dependence, now 30% fall-off in efficiency from high q² to low q²)
- Extrapolation from yield above cut to total yield Done using CLEO's photon energy spectrum for b → sγ, [b → ulv and b → sγ, both b → *light*, are governed by same light cone shape function]
 - Kagan, Neubert, deFazio, Leibovich, Low, Rothstein

 $B \rightarrow$ light quark shape function, SAME (to lowest order in Λ_{OCD}/m_b) For $b \rightarrow s\gamma \Rightarrow B \rightarrow X_s\gamma$ and $b \rightarrow u \downarrow v \Rightarrow B \rightarrow X_u \downarrow v$.

6/5/03

FPCP 2003

Endpoint Results

p (GeV/c)	$ V_{ub} $ (10 ⁻³)
2.0 - 2.6	$3.90 \pm 0.84 \pm 0.35 \pm 0.22 \pm 0.12$
2.1 - 2.6	$3.98 \pm 0.46 \pm 0.40 \pm 0.22 \pm 0.16$
2.2 - 2.6	$4.11 \pm 0.34 \pm 0.44 \pm 0.23 \pm 0.24$
2.3 - 2.6	$4.30 \pm 0.24 \pm 0.47 \pm 0.24 \pm 0.34$
2.4 - 2.6	$4.08 \pm 0.28 \pm 0.45 \pm 0.23 \pm 0.45$

BaBar: 2.3 - 2.6 ICHEP 02

$$4.43 \pm 0.29 \pm 0.50 \pm 0.25 \pm 0.35$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
yield $b \rightarrow s\gamma$ BR to $b \rightarrow s\gamma$ to
spectrum $|V_{ub}|$ $b \rightarrow ulv$

Endpoint Results

6/5/03

The LEP Analyses

ALEPH	Eur. Phys. J. C 6, 555 (1999)
OPAL	Eur. Phys. J. C 21, 399 (2001)
DELPHI	Phys. Lett. B 478, 14 (2000)
L3	Phys. Lett. B 436, 174 (1998)

Approaches have similarities, differences:

- Each has a few million hadronic Z^o decays
- Select $Z^{\circ} \rightarrow b\bar{b}$, with a lepton
- Find variables that distinguish between $b \rightarrow ulv$ and $b \rightarrow c$
- Feed into neural net and fit the distribution in the net output (ALEPH, OPAL)

OR

 Cut on variables, count yield; subtract b → c backgrounds (DELPHI, L3)

The LEP Analyses - cont'd

LEP Average:

$$|V_{ub}| = (4.09 \pm 0.37 \pm 0.44 \pm 0.34) \times 10^{-3}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (Needs to be stat. + b \rightarrow c \quad b \rightarrow ulv \quad (exp. sys \quad sys$$

Comments:

- b → c backgrounds large (5-20x signal), so systematic error from
 b → c modelling important (re-evaluate using current knowledge?)
- Efficiency (DELPHI, L3), or sensitivity (ALEPH, OPAL) varies over E_{lep} , q², M_X^2 3D phase space, so hard to evaluate determination of systematic error from b \rightarrow ulv modelling.
- Systematic error from $b \rightarrow ulv$ modelling needs to be reevaluated using contemporary techniques, e.g. light-cone shape function, with parameter range as given by $b \rightarrow s\gamma$ photon energy spectrum.

Belle

Belle has recently obtained $Br(B \rightarrow X_u lv)$ via two novel approaches - "D^(*)lv tag" and "Advanced v Reconstruction"

85 million $B\overline{B}$ events used in each

• $D^{(*)}lv$ tag: $B_1 \rightarrow D^{(*)}l_1v_1$, $B_2 \rightarrow Xl_2v_2$ - If one detects $D^{(*)}$ and l_1 , then the constraint $m_{\nu_1}^2 = \left(P_{B_1}^{\mu} - P_{D^{(*)}\ell_1}^{\mu}\right)^2 = 0 \Rightarrow cos\theta_{B_1 - D^{(*)}\ell_1}$

- If the other B decays $B_2 \rightarrow Xl_2v_2$, then the constraint

$$m_{\nu_2}^2 = \left(P_{B_2}^{\mu} - P_{X\ell_2}^{\mu}\right)^2 = 0 \Rightarrow \cos\theta_{B_2 - X\ell_2}$$

- If one has things right, the two cones will intersect. $(B_1 \text{ and } B_2 \text{ are back-to-back})$

Belle - D^(*)lv tag, cont'd

- If one has things right, the two cones will intersect. (B₁ and B₂ are back-to-back)
- So: Require that cones intersect (or almost do)
 - Require Net Q = 0
 - Require X contain no K^{\pm}
 - Require $M_X < 1.5 \text{ GeV}, P_1 > 1.0 \text{ GeV/c}$
- $S/N \approx 1:2$
 - Subtract $b \rightarrow c$ contribution

 \Rightarrow b \rightarrow ulv signal

$$|V_{ub}| = (5.00 \pm 0.60 \pm 0.23 \pm 0.05 \pm 0.39 \pm 0.36) \times 10^{-3} \text{ (Prelim)}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{stat} \quad \text{sys} \quad b \rightarrow \text{c} \quad b \rightarrow \text{u} \quad \text{theor}$$

$$? \text{How does efficiency vary over } M_X, q^2, E_{lep}?$$

Belle - Advanced v Reconstruction

- Select events with signal B decaying semileptonically, and tag B decaying hadronically
- By magic, sort all particles into those belonging to tag B, and those belonging to signal B

- "Annealing", S. Kirkpatrick et al., Science 220, 4598 (1983)
- Make cuts to throw out events that have annealed poorly.

Belle - Advanced v Recon, cont'd

- Now, knowing which particles belong to signal B, calculate q^2 , M_X , with good resolution.
- Require $M_X < 1.5 \text{ GeV}, q^2 > 7 \text{ GeV}^2$
- Estimate $b \rightarrow c$ background, subtract, count.

S/N = 0.27, 1148 signal events

? How does efficiency vary over
$$M_X$$
, q^2 , E_{lep} ?

Mx distribution for q² > 7GeV Vevenus / 0.05 GeV/ez 2000 2000 1500 closs: data hist. : estimated BG Combined cuts on Mx & q² 30 d₂ (GeV/c²)² 20 1000 Mx < 1.5 GeV/c² 500 1.5 0.5 2 $\frac{2.5}{M_{\chi}(GeV/c^2)}$ q² > 7 (GeV/c)² 15 q² distribution for Mx < 1.5GeV Nevents / 1 GeV²/c² 20 20 20 28 800 closs: data 10 700 hist. : estimated BG 600 5 00 400 Mx(GeV/c²) 0.5 1.5 2 2.5 300 200 100 0 20 $q^2 (GeV^2/c^2)^{30}$ 5 10 15

IVubl through Advanced v recon: Mx,q² distribution

BaBar - Br(B \rightarrow X_ulv), Inclusive

88 million BB pairs
Fully reconstruct one B.
Study semileptonic decay of other B.

Try MANY B decay modes - over 1100! Use the relatively clean modes (purity > 9% to 24%). Keep 0.3% of $B^0\overline{B}^0$ events, 0.5% of B+B⁻ events \Rightarrow 350,000 events with one B reconstructed

BaBar - Br(B \rightarrow X_ulv), Inclusive, cont'd

FPCP 2003

BaBar - Br(B \rightarrow X_ulv), Inclusive, cont'd

Clean up cuts

• Net charge = 0, only one lepton above 1.0 GeV/c, m_{miss}^2 small.

Improves M_x resolution

 No K[±] or K_s⁰ in X, D*lv partial reconstruction veto,

Suppresses $b \rightarrow c l v$

For $M_X < 1.55$ GeV, S/N = 2:1 - impressive!

BaBar - Br(B \rightarrow X_ulv), Inclusive, cont'd

Fit M_X distribution

- Region for $M_X > 1.55$ fixes $b \rightarrow clv$, allows extrapolation to $M_X < 1.55$
- Region for $M_X < 1.55$, with $b \rightarrow clv$ subtracted, gives $b \rightarrow ulv$
- Because S/N is so good, systematic error from modelling b → c backgrounds is small.
- Systematic errors from modelling b → ulv are *not* small. They are evaluated by varying HQET parameters Λ and λ₁ within their errors, as determined by CLEO.

BaBar - Br(B \rightarrow X_ulv), Inclusive

Results:

$$\mathcal{B}(B \to X_u \ell \nu) = (2.24 \pm 0.27 \pm 0.26 \pm 0.39) \times 10^{-3}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\operatorname{stat} \quad \operatorname{other} \quad b \to u$$

$$\operatorname{sys} \quad \operatorname{sys}$$

Exclusive $b \rightarrow ulv$ Measurements

- 1. CLEO, $B \to \pi l \nu$, $\rho l \nu$ $Br(B^0 \to \pi^- l^+ \nu) = (1.8 \pm 0.5) \times 10^{-4}$ $Br(B^0 \to \rho^- l^+ \nu) = (2.5 \pm 0.9) \times 10^{-4}$ 2. CLEO, $B \to \rho l \nu$ $Br(B^0 \to \rho^- l^+ \nu) = (2.69 \pm 0.75) \times 10^{-4}$ 3. BaBar, $B \to \rho l \nu$ $Br(B^0 \to \rho^- l^+ \nu) = (3.29 \pm 0.83) \times 10^{-4}$
- 4. CLEO B $\rightarrow \pi l \nu$, $\rho l \nu$, $\eta l \nu$ hep-ex/0304019 Br(B⁰ $\rightarrow \pi^{-}l^{+}\nu) = (1.33 \pm 0.22) \times 10^{-4}$ Br(B⁰ $\rightarrow \rho^{-}l^{+}\nu) = (2.17 \pm 0.74) \times 10^{-4}$
- All measurements "detect" the v via the missing 4-momentum in the event.
- (2.) and (3.) suppress $b \rightarrow clv$ background by (effectively) requiring $P_{lep} > 2.3 \text{ GeV/c.}$
- (1.) is superseded by (4.)

CLEO's Latest Exclusive Analysis

9.7 million BB pairs Split data into 3 q² intervals Reduces model dependence

Lower lepton momentum cut: $P_{lep} > 1.0 \text{ GeV/c for } \pi$ $P_{lep} > 1.5 \text{ GeV/c for } \rho$ Reduces model dependence

$$\mathcal{B} \left(B^{0} \to \pi^{-} \ell^{+} \nu \right) = \\ (1.33 \pm 0.18 \pm 0.11 \pm 0.01 \pm 0.07) \times 10^{-4} \\ \uparrow & \uparrow & \uparrow \\ \text{stat} & \exp & \pi \,\text{FF} \, \rho \,\text{FF} \\ \text{sys} & \text{shape} & \text{shape} \\ \mathcal{B} \left(B^{0} \to \rho^{-} \ell^{+} \nu \right) = \\ (2.17 \pm 0.34 \pm^{+0.47}_{-0.54} \pm 0.01 \pm 0.41) \times 10^{-4} \\ \text{6/5/03} & \text{FPCP 2003} \\ \end{cases}$$

CLEO'S Latest Exclusive Analysis, cont'd Obtaining $|V_{ub}|$ For $0 < q^2 < 16 \text{ GeV}^2$, use light-cone sum rules For $16 \text{ GeV}^2 < q^2 < q_{max}^2$, use lattice QCD Combine the two results

$\pi l \nu$	$3.24 \pm 0.22 \pm 0.13 {}^{+0.55}_{-0.39} \pm 0.09$
ριν	$3.00 \pm 0.21 \ {}^{+0.29}_{-0.35} \ {}^{+0.49}_{-0.38} \pm 0.28$
Combined	$3.17 \pm 0.17 \pm 0.17 \stackrel{+0.53}{_{-0.39}} \pm 0.03$
	↑↑↑↑statexptheoρ FFsysshape

V _{ub}	(10^{-3})
-----------------	-------------

V_{ub} Results

6/5/03

26

Averaging - ?!?

Simple averages of these measurements: Means: 4.03 Exclusive: 3.35 Inclusive: 4.37 Errors: ± 0.66 r.m.s. spread of means ± 0.61

No evidence of any problem. (Weak hint of exclusive/inclusive difference)

Averaging - ?!?

- Q. Can't one, shouldn't one, combine all the existing measurements of $|V_{ub}|$, taking into account correlated errors?
- A. Maybe not. It looks like a nightmare to me.
- Partially correlated errors, that must be treated in a consistent fashion
 - Model of $b \rightarrow c$, for backgrounds
 - Model of $b \rightarrow ulv$, for signal
- The "unquantifiable errors"
 - Higher twist, power correction from non-local operators
 - Local quark-hadron duality

Maybe it would be better to include only those measurements that have uniform sensitivity over a well-defined region of phase space.

6/5/03

Closing Comments

Exclusives

"Soon" there will be unquenched lattice QCD calculations for $B \rightarrow \pi l \nu$, over the full q² range, accurate to ~ ±10% in rate, therefore ± 5% in $|V_{ub}|$. Experiment (CLEO, 9.7M BB) already gives Br(B $\rightarrow \pi l \nu$) to ±17%, with statistical errors 1.4 times the sum of the systematic ones. A 12% measurement in rate is possible with data already taken by BaBar, Belle.

A very promising route to $|V_{ub}|$ to < ±10%.

Inclusives

The best way to get systematic error from modelling of $B \rightarrow X_u lv$ is from shape function, obtained from photon energy spectrum from $B \rightarrow X_s \gamma$.

⇒ Need a second measurement of the spectrum, down to 2.0 GeV at least, preferably 1.5 GeV.