

B meson semileptonic decays

Physics Motivation

Inclusive properties:

oSemileptonic width

oMoments of inclusive quantities

- •Exclusive decays
- •What is the semileptonic width made of?
- Charmless semileptonic decays
- Conclusions

Marina Artuso Syracuse University

Physics Motivation

 Ultimate goal: a precise determination of V_{cb} (more details in M. Calvi talk) & Vub (more details in E. Thorndike talk) but we need to take care of the hadronic matrix element

Belle: inclusive semileptonic decays with fully reconstructed tags

on-res. data

purity:87.2%

ff was data appled by lynnin agity

Tagging modes considered:

$$\overline{B}^{\circ} \rightarrow \begin{cases} D^{*+}\pi^{-}/D^{*+}\rho^{-}/D^{*+}a_{1} \\ D^{+}\pi^{-}/D^{+}\rho^{-}/D^{+}a_{1} \\ B^{\circ} \rightarrow \end{cases} \begin{cases} D^{*\circ}\pi^{-}/D^{*\circ}\rho^{-}/D^{*\circ}a_{1} \\ D^{\circ}\pi^{-}/D^{\circ}\rho^{-}/D^{\circ}a_{1} \\ D^{\circ}\pi^{-}/D^{\circ}\rho^{-}/D^{\circ}a_{1} \end{cases} \begin{bmatrix} B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} \\ B^{\circ} & B^{\circ} & B^{\circ} & B^{\circ} & B^{$$

purity:85.6%

Belle: inclusive charged and neutral B branching fractions

The inclusive charged and neutral B semileptonic branching fractions measured separately:

$$B(B^0 \rightarrow X \ell \nu) = (10.32 \pm 0.32 \pm 0.29)\%$$

 $B(B^+ \rightarrow X \ell \nu) = (11.92 \pm 0.26 \pm 0.32)\%$

 $\Rightarrow f^+/f^0 = 1.14 \pm 0.04|_{exp} \pm 0.01|_{theory}$

What makes up the b $\#c\ell\nu$ width?

PDG 2003 average HFAG working group

	B(%)
B ₩ X ℓv	10.70 ±0.28
B * D*ℓv	5.53 ±0.23
B # Dℓv	2.14 ±0.20

About 27% of the semileptonic branching fraction is poorly known! This has important implications for our ability to understand HQET, OPE... we need to nail this component down with further experimental information!

The hadronic matrix element

- Theoretical framework: Heavy Quark Expansion (more on N. Uraltsev talk)
- Issues to be explored by experiments:
 - Underlying theoretical accuracy: are all the uncertainties quantified? In particular ansatz of quark-hadron duality.
 - Experimental determination of the Heavy quark expansion parameters, in particular:
 - $\cdot m_{b,m_c}$ at the relevant mass scale
 - μ_{π}^2 [λ_1] kinetic energy of the b quark
 - μ_G^2 [λ_2] expectation value of chromomagnetic op.

m_b: a multifaceted fundamental parameter

Important for $V_{c(u)b}$

		m _{kin} (GeV)	$ \begin{array}{ c c } \hline \overline{\mathbf{m}}_{b}(\overline{\mathbf{m}}_{b}) \\ \hline (GeV) \end{array} $	method
Beneke Smirno	e,Signer, v	-	4.26±0.12	Sum rules
Melnik	OV	4.56±0.06	4.20±0.1	Sum rules
Hoang		4.57±0.06	4.25±0.09	Sum rules
Jamin,F	Pich	-	4.19±0.06	Sum rules, no resummation
Pineda,	Yndurain	-	$4.44_{+0.03}^{-0.04}$	Q(1S) mass
NRQC	D	-	4.28±0.03±0.03±0.10	Lattice HQET (n _f =2)
O expansion		Jet observables ser	nsitive to b ma	

+ pole mass $m_b^{pole} \approx m_{kin} + 0.255 \text{ GeV}$ Bigi-Mannel hep/ph/0212021

Experimental tools: moments of the kinematic variables

- Approaches used:
 - Moments of \boldsymbol{E}_{ℓ}
 - Moments of M_{\times} invariant mass of the hadronic system recoling against the $\ell\text{-}\nu$ pair
 - Multivariate analysis including q2, E_ℓ , $M_{\rm x}$
- Data available from CLEO, BaBar, Belle

CLEO: M_X with cut p_ℓ >1.5 GeV/c and b \rightarrow s γ (pr187[2001]251808;pr187[2001]251807)

1850801-00

The HQE parameters

Summary of the CLEO measurements

method	⊼(GeV)	λ_1 (GeV ²)
b→sγ,M _×	0.35±0.07 ±0.1	-0.238± 0.071±0.078
Truncated lepton energy mom	0.39 ±0.03 ±0.06 ±0.12	-0.25 ±0.02 ±0.05 ±0.14

Agreement even too good! $1/m_b^3$ dominant uncertainty

Consistent with $m_{\rm b}$ extracted from b production at threshold

DELPHI study of spectral moments

- Measured first 3 moments of E_ℓ and M_x , using a multiparameter fit (more details in M. Calvi's talk)

 $\overline{\Lambda}$ =0.40 ±0.10 ±0.02 GeV λ_1 =(-0.15 ±0.07 ±0.03) GeV² Consistent with CLEO results Amazingly small systematic errors

First moment of M_{x} from BaBar

•Data seem to show that average mass higher if momentum cut is relaxed: tail of high mass states predicted by N. Isgur [plb448(1999)111]?

•"Underlying assumptions of HQE + OPE require further scrutiny"

•Updated results from BaBar and CLEO expected at summer conferences

The quest for b \rightarrow u \ell v decays: inclusive approach

- The experimental challenge: single out the tiny b \to u \ell \nu component from the dominant b $\to c \ell \nu$
- Approaches taken:
 - Single out endpoint of lepton spectrum
 - M_x below M_D
 - More complex multivariate analysis, fitting explicitly for $b{\rightarrow}c\ell\nu$ contribution.
- All the suppression techniques introduce theoretical uncertainties that need to be addressed

$b{\rightarrow}u\ell\nu \text{ from lepton endpoint}$

- This technique gave the first evidence for b→uℓv decays
- Momentum cut reduced predictive power of OPE, but, up to 1/mb corrections, shape can be extrapolated from $b \rightarrow s\gamma \rightarrow use measured$ $b \rightarrow s\gamma$ shape to reduce theoretical error

$b \rightarrow u \ell v$ using M_{\star} distribution

- ALEPH & DELPHI, OPAL select samples of charmpoor semileptonic decays with a large number of selection criteria
- Can they understand b \rightarrow $c\ell v$ feedthrough < 1%?

LEP combined results

٠

b \rightarrow u $\ell \nu$ from BaBar: study of M_{x} with B tags

Use fully reconstructed B tags

 $m_{\rm ES} = \sqrt{E_{beam}^{s^*} - p_B^{s^*}}$

 $\mathcal{B}(B \to X_u \ell \bar{\nu}) = (2.14 \pm 0.29(stat) \pm 0.25(syst) \pm 0.37(theo)) \times 10^{-3}$ 19

Inclusive b \rightarrow u ℓ v from Belle

Summary of inclusive $b \rightarrow u \ell v$ determinations

Experiment	Method	$BF(B \rightarrow u\ell v)(x10^3)$
CLEO	Endpoint(2.2-2.6 GeV)	$1.77\pm0.29 _{exp}\pm0.38 _{fu}$
LEP(Vub WG ave)	M×	1.71±0.31±0.37±0.21
BaBar	Endpoint(2.3-2.6)+f _u CLEO	$2.05 \pm 0.27 _{exp} \pm 0.46 _{fu}$
BaBar	M×	2.14 ±0.29±0.25±0.37
BELLE NRIMINALY	D ^(*) ℓ tags	2.62±0.63±0.23±0.05± 0.41
BELLE	Improved v reco	$1.64 \pm 0.14 \pm 0.36 \pm 0.28 \pm 0.22$

Additional theoretical uncertainties may need to be added (higher twist effects, Mx or other $b \rightarrow u$ enhancing cuts)!

Exclusive decays: $B \rightarrow \rho \ell \nu / \pi \ell \nu$

- Important to extract V_{ub}, especially when q² dependence will be mapped precisely & more refined input from lattice calculations will be available [see talk by D. Becirevic,M.A.]
- No simple HQET effective theory available (light quark in the final state): evaluation of theoretical uncertainties difficult
- Study of q² dependence and V/P ratio are very useful checks on theory [historically they have helped in ruling out quark model calculations of $B \rightarrow \rho \ell \nu / \pi \ell \nu$.

$B \rightarrow \rho \ell \nu / \pi \ell \nu$ (CLEO)

$B \rightarrow \rho \ell \nu BaBar$

Used 50.5 1/fb on-resonance and 8.7 1/fb 40 MeV below Y(4s) resonance
Study 5 modes B -> H_uev where H_u = ρ⁰, ρ[±], ω, π⁰, π[±] in 2 lepton energy ranges:
LOLEP : 2.0 < E_e < 2.3 GeV (large b->c e v backgrounds)
HILEP : 2.3 < E_e < 2.7 GeV (large continuum backgrounds)

ISGW2: 2.76 \pm 0.34 \pm 0.40 Beyer/Melikhov: 3.64 \pm 0.46 \pm 0.52

UKQCD: 3.34 ± 0.42 ± 0.48

LCSR: 3.86 ± 0.50 ± 0.56

Ligeti/Wise: 2.86 ± 0.37 ± 0.41

Combined: 3.29 ± 0.42 ± 0.47 ± 0.60

BABAR PRELIMINARY

Summary on $B \rightarrow \rho \ell \nu / \pi \ell \nu$

experiment	Decay mode	B.F (×10 ⁻⁴)
CLEO	$B \rightarrow \pi \ell \nu$	1.33 ±0.18 ±0.11 ±0.01 ±0.07
CLEO	$B \rightarrow \rho \ell \nu$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
BaBar (prel)	$B \rightarrow \rho \ell \nu$	3.29±0.42±0.47±0.60

Conclusions

- Experimental studies of b \rightarrow (c,u) ℓv have reached a great level of sophistication, but several key issues need still to be tackled
 - Full understanding of the composition of the semileptonic width
 - Precise determination of the theory parameters
 - Assessment of non-quantified theory errors [quark hadron duality, effects of higher twists...]
 - Reliable determination of the theoretical errors in exclusive B $\to \rho \ell \nu / ~\pi \ell \nu$ transitions
- Large data sample at b-factories will allow to pursue analyses that are likely to have more controlled theoretical errors
- Charm data at threshold will help in the understanding of theoretical error [more on this later...]