Recent Advances in Semileptonic

\boldsymbol{B} Decays

Theory

Nikolai Uraltsev

> INFN, Sezione di Milano, Italy
> and
> Department of Physics, University of Notre Dame and
> PNPI Gatchina, St. Petersburg, Russia

Extracting $V_{c b}$ and $V_{u b}$ is a challenge to strong interaction theory probing our control of QCD
dynamics

- Golden way $\Gamma_{\mathrm{sl}}(B)$, inclusive decay distributions

Gold-plated modes: $B \rightarrow D^{*} \ell \nu$ and $B \rightarrow D \ell \nu$
near zero recoil $1 / m_{c}^{k}$ corrections are not too small...

Inclusive decays provide a host of dynamic info vital for $B \rightarrow D^{*}$ and $B \rightarrow D$ decays

Recent inclusive data fuel advances in the old field

Theory progress:

New HQ sum rules (exact spin sum rules)
exact inequalities
D' Orsay sum rules
HQ relations for higher IW derivatives

BPS expansion

The $1 / m_{c}$ corrections to HQ spin symmetry are too significant A subgroup, HF symmetry for ground-state pseudoscalar mesons is good
'light charm' problems may even affect inclusive decays via $\langle B| \bar{b} c \bar{c} b|B\rangle \quad$ BBMU 2003
Theoretical fidelity exceeds lattice accuracy, can be used to cross-check lattice simulations Some problems may be emerging

Highlights:

$B \rightarrow D \ell \nu$ amplitude may be known theoretically with a $1-2 \%$ accuracy at small recoil
\& $B \rightarrow D \ell \nu$ decay rate may be measuring the whole IW function without significant power corrections

Accuracy of the predictions strongly depends on the precise value of $\mu_{\pi}^{2}(1 \mathrm{GeV})$ best for low, qualitative at upper end will have been clarified in inclusive decays
$B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow X_{c} \tau \nu \quad$ offer interesting studies (m_{c}, local duality violation, ...)

Recent progress in 'inclusive' OPE:

Perturbative resummation for $\Gamma_{\mathrm{sl}}(B)$ hep-ph/0210413, hep-ph/0302262

- Higher orders in $1 / m_{b}$ and a new class of nonperturbative effects from $\langle\bar{b} c \bar{c} b\rangle \quad$ hep-ph/0302262

Present stage:

Have an accurate and reliable determination of some HQ parameters from experiment

Extracting $\left|V_{c b}\right|$ from $\Gamma_{\mathrm{sl}}(B)$ has good accuracy and solid grounds

Have at least one precision check of the OPE at the nonperturbative level

Theoretical status

Can go down to a $\%$ level in $\left|V_{c b}\right|$ if relevant parameters are determined:
$m_{b, c}(\mu), \mu_{\pi}^{2}(\mu), \mu_{G}^{2}(\mu), \ldots$ are completely defined and can (in principle) be determined from experiment with an unlimited accuracy

Duality violation is very small in $\Gamma_{\mathrm{sl}}(B)$
BU 2001
α_{s} corrections to Wilson coefficients are feasible Limiting factor Know how to analyze higher power corrections

BBMU 2003
$m_{b}, m_{c}, \mu_{\pi}^{2}, \ldots$ (properly defined) can be determined from the semileptonic $(b \rightarrow s+\gamma)$ decay distributions themselves

BSUV, 1993-1994
Nowadays is being implemented in a number of
experiments
New strategy: formulated at CKM 2002 @ CERN
Comprehensive approach: measure many observables to extract the 'theoretical' input parameters

We can do without relying on $1 / m_{c}$ expansion at all Expansion in $1 / m_{c}$ is questionable: $\quad \frac{1}{m_{c}^{2}}>14 \frac{1}{m_{b}^{2}}, 8 \frac{1}{\left(m_{b}-m_{c}\right)^{2}}$

Hadronic moments: if m_{c} were large enough first would yield $\bar{\Lambda}$, second μ_{π}^{2}, third ρ_{D}^{3} more or less directly BSUv 1993-94

The comprehensive studies allow a robust analysis width is affected only by ρ_{D}^{3} to order $1 / m_{b}^{3}$ moments also depend (weakly) on $\rho_{L S}^{3}$
No non-local correlators ever enter
Deviations from the HQ limit are driven by $1 / m_{b}$
actually, $\propto \mu_{\pi}^{2}-\mu_{G}^{2} \ll \mu_{\pi}^{2}$ in $B \quad$ BPS limit
Exact sum rules and inequalities for properly defined parameters e.g., $\quad \mu_{\pi}^{2}>\mu_{G}^{2} \simeq 0.35 \mathrm{GeV}^{2}$

How this works: illustration

$$
\begin{aligned}
&\left\langle E_{\ell}\right\rangle= 1.38 \mathrm{GeV}+0.38\left[\left(m_{b}-4.6 \mathrm{GeV}\right)-0.71\left(m_{c}-1.15 \mathrm{GeV}\right)+\right. \\
&\left.0.09\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.22\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right)\right] \\
& \mathcal{L}_{2}= 0.18 \mathrm{GeV}^{2}+0.1\left[\left(m_{b}-4.6 \mathrm{GeV}\right)-\ldots\right]+0.01\left(m_{c}-1.15 \mathrm{GeV}\right) \\
&+0.04\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.04\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right) \\
& \mathcal{L}_{3}=-0.033 \mathrm{GeV}^{3}-0.03\left[\left(m_{b}-4.6 \mathrm{GeV}\right)-\ldots\right]+0\left(m_{c}-1.15 \mathrm{GeV}\right) \\
&+0.03\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.04\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right)
\end{aligned}
$$

Practically the same combination $m_{b}-0.7 m_{c}$

 weak dependence on $\mu_{\pi}^{2}, \rho_{D}^{3}$$$
\begin{aligned}
\frac{\left|V_{c b}\right|}{0.042}= & 1-0.65\left[\left(m_{b}-4.6 \mathrm{GeV}\right)-\ldots\right]-0.06\left(m_{c}-1.15 \mathrm{GeV}\right) \\
& -0.07\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.05\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right)
\end{aligned}
$$

Precise value of m_{c} is irrelevant!
Need to know with some accuracy μ_{π}^{2} and ρ_{D}^{3} no hidden assumptions

Hadronic moments

$\left\langle M_{X}^{2}\right\rangle \simeq 4.54 \mathrm{GeV}^{2}-5\left[\left(m_{b}-4.6 \mathrm{GeV}\right)-0.62\left(m_{c}-1.15 \mathrm{GeV}\right)\right.$

$$
\left.+0.13\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.2\left(\tilde{\rho}_{D}^{3}-0.12\right)\right]
$$

Nearly the same combination $m_{b}-0.7 m_{c}-0.1 \mu_{\pi}^{2}-0.2 \tilde{\rho}_{D}^{3}$ as in $\left\langle E_{\ell}\right\rangle$

Not very constraining ... - instead checks how HQ expansion works: Theory predicts $\left\langle E_{\ell}\right\rangle=1.377 \mathrm{GeV}$

Experiment: $\left\langle E_{\ell}\right\rangle=1.383 \pm 0.015 \mathrm{GeV}$

A highly nontrivial nonperturbative check of the OPE: the sum rule for $M_{B}-m_{b} \simeq 650 \mathrm{MeV}$ verified at a 40 MeV level!

$$
\begin{aligned}
\left\langle\left(M_{X}^{2}-\left\langle M_{X}^{2}\right\rangle\right)^{2}\right\rangle \simeq & 1.2 \mathrm{GeV}^{4}+0.02\left(m_{b}-4.6 \mathrm{GeV}\right)-0.7\left(m_{c}-1.15\right) \\
& +4.5\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-5.3\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right) \\
\left\langle\left(M_{X}^{2}-\left\langle M_{X}^{2}\right\rangle\right)^{3}\right\rangle \simeq & 4 \mathrm{GeV}^{6}-\left(m_{b}-4.6 \mathrm{GeV}\right)-3\left(m_{c}-1.15 \mathrm{GeV}\right) \\
& +5\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)+12\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right)
\end{aligned}
$$

Ideally, these moments measure kinetic and Darwin expectation values. In practice, for ρ_{D}^{3} only approximate evaluation and an informative upper bound

Current sensitivity to μ_{π}^{2} is about $0.1 \mathrm{GeV}^{2}, 0.1 \mathrm{GeV}^{3}$ to ρ_{D}^{3}

$$
\begin{aligned}
\frac{\left|V_{c b}\right|}{0.042}= & 1-0.13\left[\left\langle M_{X}^{2}\right\rangle-4.54 \mathrm{GeV}^{2}\right]-0.005\left(m_{c}-1.15 \mathrm{GeV}\right) \\
& +0.10\left(\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}\right)-0.03\left(\tilde{\rho}_{D}^{3}-0.12 \mathrm{GeV}^{3}\right)
\end{aligned}
$$

Measuring $\left\langle M_{X}^{4}\right\rangle$ and $\left\langle M_{X}^{6}\right\rangle$ is the real step in implementing the comprehensive program of extracting $\left|V_{c b}\right|$
further work is required

Example:

$$
\left|V_{c b}\right|=0.0421 \cdot\left(1 \pm 0.015_{\text {SL widh }} \pm 0.02_{\text {Ho pram }}\right)
$$ solely from DELPHI hadronic moments

Does not rely on expansion in $1 / m_{c}$!
small uncertainties are not dominated by theory
(Recent theory review: hep-ph/0302262, ND-Karlsruhe-Milan)

Moreover,

assuming $\bar{m}_{c}\left(m_{c}\right)=1.23 \mathrm{GeV} \quad m_{b}(1 \mathrm{GeV}) \simeq 4.58 \mathrm{GeV}$
(too) good agreement with the theoretical expectations?

Hadronic parameters

$$
\bar{\Lambda}(1 \mathrm{GeV}), \quad \mu_{\pi}^{2}(1 \mathrm{GeV}), \quad \mu_{G}^{2}(1 \mathrm{GeV}), \ldots
$$

Using the same accurate regularized definition for kinetic ($\{j, k\}$) and chromomagnetic ($[j, k]$) operators allows precision numerical evaluation

Product of covariant derivatives $\bar{Q}(x) i D_{j} P \exp i D_{k} Q(0)$ offset along t direction $\quad i t \sim 1 / \mu$

$$
M_{B^{*}}-M_{B} \simeq \frac{2}{3} \frac{\mu_{G}^{2}}{m_{b}}
$$

$$
\mu_{G}^{2}(1 \mathrm{GeV})=0.35_{-.02}^{+.03} \mathrm{GeV}^{2}
$$

N.U. 2001
$\mu_{\pi}^{2}(\mu)>\mu_{G}^{2}(\mu) \quad$ at any $\mu \quad$ rigorous inequality
BSUV, Voloshin 1993-1994
Physical observables, renormalon-free \Rightarrow have definite values in Nature
Experiment: typically $\mu_{\pi}^{2}(1 \mathrm{GeV}) \simeq(0.37 \pm 0.1) \mathrm{GeV}^{2}$

$$
\mu_{\pi}^{2}(1 \mathrm{GeV})>0.45 \mathrm{GeV}^{2} \quad \text { excluded } ?
$$

Assume this for what follows

$\underline{B \rightarrow D^{*}+\ell \bar{\nu} \text { at zero recoil }}$

$\mathrm{d} w\left(B \rightarrow D^{*}+\ell \bar{\nu}\right) \sim G_{F}^{2} \cdot\left|V_{c b}\right|^{2} \cdot|\vec{p}| \cdot\left|F_{B \rightarrow D^{*}}(\vec{p})\right|^{2}$

$F(\vec{p}=0)=1$ up to 'isotopic effects'
$F_{\mathrm{n} / \mathrm{p}}(0)=1+\frac{0}{m_{c, b}}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{c, b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{3}}{m_{c, b}^{3}}\right)+\ldots$
$1 / m_{b, c}$ effects are absent
1986 Voloshin, Shifman 1990 Luke

Important to estimate $\delta_{1 / m^{2}}$
Before May 1994:
$\delta_{1 / m^{2}} \simeq-0.02$
$\mathrm{OPE} \Longrightarrow \mathrm{HQ}$ Sum Rules
SUV, BSUV April 1994
Experiment June 1994
$-\delta_{\mathrm{n} / \mathrm{p}}>\frac{M_{B^{*}}^{2}-M_{B}^{2}}{8 m_{c}^{2}} \simeq-0.04$
rigorous bound on $F(0)$
$F(0) \simeq 0.9 \quad$ actual estimate

Numerical estimates of $F_{D^{*}}$

$$
\begin{aligned}
& F_{D^{*}}=\left[\xi_{A}(\mu)-\frac{\mu_{G}^{2}}{3 m_{c}^{2}} \frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)-\sum_{f \neq D^{*}}^{\epsilon<\mu}\left|F_{B \rightarrow f}\right|^{2}+\mathcal{O}\left(\frac{1}{m^{3}}\right)\right]^{\frac{1}{2}} \\
& \text {--------------- }
\end{aligned}
$$

$\xi_{A}^{\frac{1}{2}}(\mu)$ is the short-distance renormalization factor 0.97 ± 0.01
$\sum_{f \neq D^{*}}^{\epsilon<\mu}\left|F_{B \rightarrow f}\right|^{2}=\chi\left[\frac{\mu_{G}^{2}}{3 m_{c}^{2}}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)+\mathcal{O}\left(\frac{1}{m^{3}}\right)\right]$
χ describes the wi overlap deficit guess: $0<\chi \leq 1$ SUV 1994

$$
F_{D^{*}} \simeq \xi_{A}^{\frac{1}{2}}-(1+\chi)\left[\frac{\mu_{G}^{2}}{6 m_{c}^{2}}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{8}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{b}^{2}}+\frac{2}{3 m_{c} m_{b}}\right)+\Delta_{\frac{1}{m^{3}}}\right]
$$

$$
\text { if } \chi=0.5 \pm 0.5 \quad \mu \approx 0.8 \mathrm{GeV}
$$

$F_{D^{*}} \simeq 0.89-0.015 \frac{\mu_{\pi}^{2}-0.4 \mathrm{GeV}^{2}}{0.1 \mathrm{GeV}^{2}} \pm 0.03_{\mathrm{exc}} \pm 0.01_{\mathrm{pert}}$ $1 / m_{c}^{3}$ correction is significant!
$F_{D^{*}} \lesssim 0.92 \quad$ for $\quad \chi \simeq 0$

$$
\chi^{\text {pert }}=1 @ \mathcal{O}\left(\alpha_{s}^{1}\right)
$$

't Hooft model: $\quad \chi=\frac{13}{21}+\frac{5}{21} \frac{m^{2}-\beta^{2}}{\bar{\Lambda}^{2}-m^{2}+\beta^{2}}-\frac{4}{21}\left(\varrho^{2}-\frac{3}{4}\right) \simeq 0.55$

$B \rightarrow D \ell \nu$ near zero recoil

$\left\langle D\left(p_{2}\right)\right| \bar{c} \gamma_{\nu} b\left|B\left(p_{1}\right)\right\rangle=f_{+}\left(p_{1}+p_{2}\right)_{\nu}+f_{-}\left(p_{1}-p_{2}\right)_{\nu}$

$$
f_{ \pm} \equiv f_{ \pm}\left(\vec{q}^{2}\right)
$$

One amplitude $J_{0}=\left(M_{B}+M_{D}\right) f_{+}(0)+\left(M_{B}-M_{D}\right) f_{-}(0)$ at $\vec{q}=0$

HQ limit: $\quad f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}, \quad f_{-}=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}$
$\frac{J_{0}}{2 \sqrt{M_{B} M_{D}}}=1-a_{2}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}-a_{3}\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right)^{2}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\ldots$
Corrections are well under control and small quantify later

Any amplitude with massless leptons depends, however solely on f_{+}, while only the combination of f_{+}and f_{-}has no $1 / m$ corrections
$F_{+} \equiv \frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}$has $1 / m_{Q}$ corrections since \vec{J} has such a term...

Good news: we know it!

$$
F_{+}=1+\left(\frac{\bar{\Lambda}}{2}-\bar{\Sigma}\right)\left(\frac{1}{m_{c}}-\frac{1}{m_{b}}\right) \frac{M_{B}-M_{D}}{M_{B}+M_{D}}-\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
$$

Thanks to inclusive decays and exact sum rules we know $\frac{\bar{\Lambda}}{2}-\bar{\Sigma}$ (positive, but very small $\propto \frac{\mu_{\pi}^{2}-\mu_{C}^{2}}{3 \mu_{\text {hadr }}}$)

Moreover, we know all power corrections are small, the concern is rather exponential terms $\sim e^{-2 m_{c} / \mu_{\text {hadr }}}$

$$
\frac{2 \sqrt{M_{B} M_{D}}}{M_{B}+M_{D}} f_{+}(0)=1.03 \pm 0.025
$$

All orders in $1 / m$ in BPS, to $1 / m \cdot 1 /$ BPS $^{2}, \alpha_{s}^{1}$
This formfactor is known better than for

$$
\text { 'gold-plated' } B \rightarrow D^{*}
$$

differs from existing estimates

Obsolete evaluations of the perturbative effects to be refined

If this can be measured, nothing else exclusive may be required for $\left|V_{c b}\right|$

Sum Rules in the HQ Limit

$$
\begin{aligned}
\varrho^{2}-\frac{1}{4} & =2 \sum_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
\frac{1}{2} & =2 \sum_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
\frac{\Lambda}{2} & =2 \sum_{m} \epsilon_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
\bar{\Sigma} & =2 \sum_{m}^{m} \epsilon_{m}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n} \epsilon_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
\frac{\mu_{\pi}^{2}}{3} & =2 \sum_{m} \epsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}^{2}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
\frac{\mu_{G}^{2}}{3} & =2 \sum_{m} \epsilon_{m}^{2}\left|\tau_{3 / 2}^{(m)}\right|^{2}-\left.2 \sum_{n} \epsilon_{n}^{2}| |_{1 / 2}^{(n)}\right|^{2} \\
\frac{\rho_{D}^{3}}{3} & =2 \sum_{m} \epsilon_{m}^{3}\left|\tau_{3 / 2}^{(m)}\right|^{2}+\sum_{n} \epsilon_{n}^{3}\left|\tau_{1 / 2}^{(n)}\right|^{2} \\
-\frac{\rho_{L S}^{3}}{3} & =2 \sum_{m} \epsilon_{m}^{3}\left|\tau_{3 / 2}^{(m)}\right|^{2}-2 \sum_{n} \epsilon_{n}^{3}\left|\tau_{1 / 2}^{(n)}\right|^{2}
\end{aligned}
$$

Second and Fourth sum rules are superconvergent

$$
\begin{aligned}
\epsilon_{k} & =M_{k}-M_{B} \\
\langle B(v)| \bar{b} \gamma_{0} b|B(0)\rangle & =1-\varrho^{2} \frac{\vec{v}^{2}}{2}+\mathcal{O}\left(\vec{v}^{4}\right) \\
\left\langle P^{(1 / 2)}\left(v_{2}\right)\right| \bar{b} \gamma_{\mu} \gamma_{5} b\left|B\left(v_{1}\right)\right\rangle & =-\tau_{1 / 2}\left(v_{1}-v_{2}\right)_{\mu} \\
\left\langle P^{(3 / 2)}\left(v_{2}\right)\right| \bar{b} \gamma_{\mu} \gamma_{5} b\left|B\left(v_{1}\right)\right\rangle & =-\frac{1}{\sqrt{2}} i \tau_{3 / 2} \epsilon_{\mu \alpha \beta \gamma} \varepsilon^{* \alpha} v_{2}^{\beta} v_{1}^{\gamma} \\
\text { spin of light cloud is } & \begin{cases}\frac{1}{2} & \text { in } P^{(1 / 2)} \\
\frac{3}{2} & \text { in } P^{(3 / 2)}\end{cases}
\end{aligned}
$$

Remarkable extension of first sum rules to v^{4} and higher orders:

D' Orsay Sum Rules

Le Yaouanc, Oliver, Raynal 10/2002
OPE for nonforward scattering amplitude

$$
\begin{gathered}
\varrho_{L}^{2}=\left.(2 L+1) \sum_{n}\left|\tau_{L+\frac{1}{2}}^{(n)}\right|^{2} \quad \varrho_{L}^{2} \equiv \frac{(-1)^{L}}{L!} \frac{\mathrm{d}^{L} \xi(w)}{(\mathrm{d} w)^{L}}\right|_{\mathrm{w}=1} \\
L \sum_{n}\left|\tau_{L+\frac{1}{2}}^{(n)}\right|^{2}-\sum_{k}\left|\tau_{L-\frac{1}{2}}^{(k)}\right|^{2}=\frac{2 L-1}{4} \sum_{n}\left|\tilde{\tau}_{(L-1)+\frac{1}{2}}^{(n)}\right|^{2} \\
\text { Divergent - undergo renormalization... }
\end{gathered}
$$

Peculiar: only L-th orbital waves enter for L-th derivative!

For instance

$$
\varrho_{2}^{2} \geq \frac{5}{4} \varrho^{2} \geq \frac{15}{16}
$$

IW curvature IW slope

$$
\varrho_{L}^{2} \geq \frac{(2 L+1)!!}{2^{2 L} L!} \varrho^{2}
$$

'Extended BPS' limit: All $\tau_{L-\frac{1}{2}}^{2}$ suppressed ?!
all 'spin' inequalities are approximately saturated
$\xi_{\mathrm{BPS}}(w)=\left(\frac{2}{w+1}\right)^{\frac{3}{2}}$
Can be directly measured in
$B \rightarrow D \ell \nu$

Sum rules yield strict inequalities

$$
\begin{array}{ll}
\varrho^{2}>\frac{3}{4}, \quad \bar{\Lambda}>2 \bar{\Sigma}, \quad \mu_{\pi}^{2}>\mu_{G}^{2}, \quad & \rho_{D}^{3}>-\rho_{L S}^{3} \\
& \rho_{D}^{3}>\left|\rho_{L S}^{3}\right| / 2
\end{array}
$$

Likewise

$$
\mu_{\pi}^{2} \geq \frac{3 \bar{\Lambda}^{2}}{4 \varrho^{2}-1}, \quad \rho_{D}^{3} \geq \frac{3}{8} \frac{\bar{\Lambda}^{3}}{\left(\varrho^{2}-\frac{1}{4}\right)^{2}}, \quad \rho_{D}^{3} \geq \frac{\left(\mu_{\pi}^{2}\right)^{3 / 2}}{\sqrt{3\left(\varrho^{2}-\frac{1}{4}\right)}}
$$

Similarly for W_{-}moments

Positivity for many non-local correlators

Hold in our renormalization scheme

Maximal physical information - the case of 'kinetic' mass and other definitions based on the SV sum rules

Good example: $\varrho^{2}>\frac{3}{4}$
Dynamic, much stronger than the Bjorken's $\varrho^{2}>\frac{1}{4}$

Moreover

$$
\begin{array}{r}
\mu_{\pi}^{2}(\mu)-\mu_{G}^{2}(\mu)=3 \tilde{\varepsilon}^{2} \cdot\left(\varrho^{2}(\mu)-\frac{1}{4}-S(\mu)\right) \quad 0.5 \mathrm{GeV}<\tilde{\varepsilon}<\mu \\
S(\mu)=2 \sum_{\varepsilon<\mu}\left|\tau_{3 / 2}^{(m)}\right|^{2}-\left|\tau_{1 / 2}^{(n)}\right|^{2} \underset{\mu \rightarrow \infty}{\longrightarrow} \frac{1}{2}+0
\end{array}
$$

If the first spin sum rule is saturated at $\mu=1 \mathrm{GeV}$ then

$$
\mu_{\pi}^{2}-\mu_{G}^{2}=3 \tilde{\varepsilon}^{2} \cdot\left(\varrho^{2}-\frac{3}{4}\right)
$$

Quite a constraint:

$$
\left(\varrho^{2}-\frac{3}{4}\right)=\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{3 \tilde{\varepsilon}^{2}} \lesssim 0.2
$$

$$
\text { at } \mu_{\pi}^{2}=0.43(0.5) \mathrm{GeV}^{2} \text { since } \tilde{\varepsilon}>0.4 \mathrm{GeV}
$$

ϱ^{2} is probed in experiment important for $V_{c b}$ radically improves $B \rightarrow D^{*}$ extrapolation to zero recoil

Neubert, 1993: $\hat{\varrho}^{2} \simeq \varrho^{2}-0.09$
hardly correct
Excluded by experiment

Recent UKQCD lattice is quite compatible with the prediction:

$$
\varrho^{2}=0.83_{-.11-.01}^{+.15+.24}
$$

Question to experiment and fits:
What is the value for $F(1) \cdot\left|V_{c b}\right|$ with the constraint $\hat{\varrho}^{2}<1.2$?

The whole set of the sum rule constraints is even more interesting

If indeed $\mu_{\pi}^{2} \lesssim 0.45 \mathrm{GeV}^{2}$, i.e. $\mu_{\pi}^{2}-\mu_{G}^{2} \ll \mu_{\pi}^{2}, \mu_{G}^{2}$

BPS expansion

N.U. 2001

Expand around $\mu_{\pi}^{2}-\mu_{G}^{2}=0$

$\varrho^{2}-\frac{3}{4}, \bar{\Lambda}-2 \bar{\Sigma}, \quad \mu_{\pi}^{2}-\mu_{G}^{2}, \quad \rho_{D}^{3}+\rho_{L S}^{3}, \ldots$ are all moments of one and the same HQ positive structure function which then must be suppressed

- At $\mu_{\pi}^{2}=\mu_{G}^{2}$ there is a functional relation $\vec{\sigma} \vec{\pi}|B\rangle=0$ Reminiscent to a "BPS"-saturated state not literally?

$$
\mathcal{H}_{Q}=A_{0}+\frac{(\vec{\sigma} \vec{\pi})^{2}}{2 m_{Q}}
$$

Yet

$$
\mathcal{P}_{z}\left|B_{\frac{1}{2}}\right\rangle=0, \quad \mathcal{P}_{x}-i \mathcal{P}_{y}\left|B_{\frac{1}{2}}\right\rangle=0
$$

Ultrarelativistic light cloud - antipode to NR quark models

Remarkable limit in many respects

Infracted by hard gluons
rather a property of soft dynamics

Often extends Heavy Flavor (but not Spin) symmetry to all orders in $1 / m_{Q}$

No formal power corrections to $m_{b}-m_{c}=M_{B}-M_{D}$ only exponential in $2 m_{c} / \mu_{\text {hadr }}$

A number of relations, among them

$$
\begin{aligned}
& \varrho^{2}=\frac{3}{4}, \quad \bar{\Lambda}=2 \bar{\Sigma}, \quad \rho_{D}^{3}+\rho_{L S}^{3}=0, \ldots \\
& \rho_{\pi G}^{3}=-2 \rho_{\pi \pi}^{3}, \quad \rho_{A}^{3}+\rho_{\pi G}^{3}=-\left(\rho_{\pi \pi}^{3}+\rho_{S}^{3}\right), \ldots
\end{aligned}
$$

A chain of higher-order corrections is suppressed

Miracles of the BPS limit

$\varrho^{2}=\frac{3}{4}$
No power corrections to $M=m_{Q}+\bar{\Lambda}$ for the ground state

$$
M_{B}-M_{D}=m_{b}-m_{c} \text { to all orders in } 1 / m_{Q}
$$

All $1 / m_{Q}^{k}$ terms in the Hamiltonian annihilate the ground state Foldy-Wouthuysen transformation is trivial on the ground state at rest; no lower component of the Q bispinor appears to any order

For $B \rightarrow D$ amplitude
$f_{-}\left(q^{2}\right)=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}\left(q^{2}\right)$ to any order in $1 / m_{Q}$

Zero recoil $B \rightarrow D$ amplitude: $\quad \delta_{1 / m^{k}}=0$
regardless of mass ratio

- In $B \rightarrow D$ at zero recoil

$$
f_{+}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} \quad \text { to all orders in } 1 / m_{Q}
$$

At arbitrary velocity power corrections in $B \rightarrow D$ vanish (or only kinematic)

$$
f_{+}(q)^{2}=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}} \xi\left(\frac{M_{B}^{2}+M_{D}^{2}-q^{2}}{2 M_{B} M_{D}}\right)
$$

Decay rate directly gives the IW function
Experiment: $\quad B \rightarrow D$ slope much closer to $\varrho^{2} \simeq 0.9$

$$
B \rightarrow D^{*}: \quad \delta_{1 / m^{2}}=-(1+\chi)\left(\frac{\mu_{G}^{2}}{6 m_{c}^{2}}+\ldots\right)
$$

usually assume $0<\chi<1$
$1-\frac{\mu_{G}^{2}}{6 m_{c}^{2}}$ itself is just normalization, what about the overlap χ, maybe χ is also small?

No, even in the BPS limit spin symmetry receives large corrections, χ is significant in $B \rightarrow D^{*}$ and $\delta_{1 / m^{2}}, \delta_{1 / m^{3}}, \ldots$ are not suppressed at all
N.U. 2001

$$
\mathrm{BPS}: \quad F_{D^{*}} \lesssim 0.9
$$

Likewise corrections to the shape of the $B \rightarrow D^{*}$ formfactor are way too significant

Irreducible uncertainties:

$$
e^{-\frac{2 m_{c}}{\mu_{\text {hadr }}}} \sim \text { a few } \%
$$

Quantifying Corrections to BPS

BPS limit is not exact in QCD. How significant are corrections to its relations?

It depends

The deviation parameter? The most natural would be

$$
\alpha=\|(\vec{\sigma} \vec{\pi})|B\rangle \| \equiv \sqrt{\mu_{\pi}^{2}-\mu_{G}^{2}} \quad-\quad \text { dimensionfull... }
$$

Dimensionless parameter is

$$
\beta=\| \pi_{0}^{-1}(\vec{\sigma} \vec{\pi})|B\rangle \| \equiv \sqrt{3\left(\varrho^{2}-\frac{3}{4}\right)}=3\left(\sum_{n}\left|\tau_{1 / 2}^{(n)}\right|^{2}\right)^{\frac{1}{2}}
$$

Numerically β is not a too small number, similar in size to generic $1 / m_{c}$ expansion parameter

However, $\mu_{\pi}^{2}-\mu_{G}^{2} \propto \beta^{2}$ should be good
We can count together powers of $1 / m_{c}$ and β to judge the real quality of the HQ relations

At which order in β the BPS relations can be violated?

Not difficult to answer to the leading orders in $1 / m_{Q \ldots} \ldots$ Need classification in β to all orders in $1 / m_{Q}$

Absence of corrections to $M_{D}=m_{c}+\bar{\Lambda}$,

$$
M_{B}-M_{D}=m_{b}-m_{c} \text { holds up to } \beta^{2}
$$

$\bar{\Sigma}=\frac{\overline{1}}{2}, \quad \rho_{L S}^{3}=-\rho_{D}^{3}, \rho_{A}^{3}+\rho_{\pi G}^{3}=-\left(\rho_{\pi \pi}^{3}+\rho_{S}^{3}\right)$ hold up to β^{2}, but $\rho_{\pi G}^{3}=-2 \rho_{\pi \pi}^{3}$ only to the leading order in BPS

Zero recoil $B \rightarrow D$ amplitude is unity up to β^{2}
At arbitrary velocity relation between f_{+}and f_{-} in $B \rightarrow D$ holds only to the leading order

$$
f_{-}\left(q^{2}\right)=-\frac{M_{B}-M_{D}}{M_{B}+M_{D}} f_{+}\left(q^{2}\right)+\mathcal{O}(\beta)
$$

At arbitrary velocity the relations between $f_{ \pm}$in $B \rightarrow D$ and the IW function may receive corrections $\alpha \beta^{1}$

- f_{+}near zero recoil receives only second order corrections in β to any order in $1 / m_{Q}$:

$$
f_{+}\left(\left(M_{B}-M_{D}\right)^{2}\right)=\frac{M_{B}+M_{D}}{2 \sqrt{M_{B} M_{D}}}+\mathcal{O}\left(\beta^{2}\right)
$$

Analogue of the Ademollo-Gatto theorem for the BPS expansion
the same applies to f_{-}
Must be quite accurate, f_{-} / f_{+}can be checked in $B \rightarrow D \tau \nu_{\tau}$

Semileptonic B decays with $\tau \nu_{\tau}$

$B \rightarrow D \tau \nu_{\tau}$ amplitude does not vanish at $\vec{q} \rightarrow 0$ due to f_{-}although still suppressed
can check the BPS relation between f_{+}and f_{-}

Velocity range is limited, $1 \leq w \leq 1.43$ and
$\mathrm{BR}\left(B \rightarrow D \tau \nu_{\tau}\right)$ is well predicted in terms of $\varrho^{2}-\frac{3}{4}$

Inclusive width $B \rightarrow X_{c} \tau \nu_{\tau}$ is very sensitive to $m_{b}-m_{c} \quad$ (for light leptons $m_{b}-0.6 m_{c}$)

Lattices may be reliable for $m_{b}-m_{c}$ from $M_{\Upsilon}, M_{B_{c}}$ and $M_{J / \Psi}$

Energy release is limited, $m_{b}-m_{c}-m_{\tau} \simeq 1.6 \mathrm{GeV}$
sensitive to higher power corrections probe of duality violation possible effects of nonperturbative charm operators
$\langle B| \bar{b} c \bar{c} b|B\rangle \quad$ BBMU 2003

More possibilities if these decays are feasible!
Can we separately measure inclusive width for vector and axial? A good test of inclusive vs. exclusive HQE

Conclusions:

Inclusive studies yield crucial info for HQ physics, even for exclusive amplitudes Formerly viewed as antipodes

Power corrections to HQ symmetry are very

 significant in charm. There is a subset of relations which are stable, they are limited to the ground-state pseudoscalar B and D mesons, but exclude spin symmetry for charmExperiment must verify the actual value of the kinetic expectation value, with higher accuracy and fidelity in inclusive decays
$B \rightarrow D$ decays can be reliable theory-wise in the BPS case

If $\mu_{\pi}^{2} \lesssim 0.43 \mathrm{GeV}^{2}$ is confirmed then
$\mathcal{F}_{+}(0) \simeq 1.03$ is an accurate prediction for $B \rightarrow D$
Many nontrivial consequences of the BPS regime

$$
\text { Slope } \varrho^{2} \text { is close to } 1 \text { - }
$$

Fits of $B \rightarrow D^{*}$ should incorporate constraints on $\hat{\varrho}^{2}$
$B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow X_{c} \tau \nu \quad$ offer a number of interesting possibilities

