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Extracting Vcb and Vub is a challenge to strong

interaction theory probing our control of QCD
dynamics

• Golden way Γsl(B), inclusive decay distributions

• Gold-plated modes: B → D∗ `ν and B → D `ν
near zero recoil

1/mk
c corrections are not too small...

Inclusive decays provide a host of dynamic info vital
for B → D∗ and B → D decays

Recent inclusive data fuel advances in the old field

Theory progress:

New HQ sum rules (exact spin sum rules)
exact inequalities

D ′Orsay sum rules HQ relations for higher IW derivatives

BPS expansion

The 1/mc corrections to HQ spin symmetry are too significant
A subgroup, HF symmetry for ground-state pseudoscalar mesons

is good
‘light charm’ problems may even affect inclusive decays via 〈B|b̄c c̄b|B〉 BBMU2003

Theoretical fidelity exceeds lattice accuracy, can be used to cross-check lattice
simulations Some problems may be emerging



Highlights:

♠ B→D `ν amplitude may be known theoretically

with a 1−2% accuracy at small recoil

♣ B→D `ν decay rate may be measuring the whole

IW function without significant power corrections

Accuracy of the predictions strongly depends on the precise
value of µ2π(1GeV) best for low, qualitative at upper end

will have been clarified in inclusive decays

♠

B→D(∗) τν and B→Xc τν offer interesting

studies (mc, local duality violation, ...)



Recent progress in ‘inclusive’ OPE:

• Perturbative resummation for Γsl(B)
hep-ph/0210413, hep-ph/0302262

• Higher orders in 1/mb and a new class of

nonperturbative effects from 〈b̄c c̄b〉 hep-ph/0302262

Present stage:

♠ Have an accurate and reliable determination of

some HQ parameters from experiment

♣ Extracting |Vcb| from Γsl(B) has good

accuracy and solid grounds

♠

Have at least one precision check of the OPE at

the nonperturbative level



Theoretical status

Can go down to a % level in |Vcb| if relevant

parameters are determined:

• mb,c(µ), µ
2
π(µ), µ

2
G(µ), ... are completely defined and can

(in principle) be determined from experiment with an
unlimited accuracy

• Duality violation is very small in Γsl(B) BU 2001

• αs corrections to Wilson coefficients are feasible Limiting factor

• Know how to analyze higher power corrections BBMU 2003

mb, mc, µ
2
π, ... (properly defined) can be determined

from the semileptonic (b→s+γ) decay distributions

themselves BSUV, 1993-1994

Nowadays is being implemented in a number of
experiments

New strategy: formulated at CKM 2002 @ CERN

Comprehensive approach: measure many observables

to extract the ‘theoretical’ input parameters

We can do without relying on 1/mc expansion at all

Expansion in 1/mc is questionable:
1
m2
c
> 14 1

m2
b
, 8 1

(mb−mc)2



Hadronic moments : if mc were large enough first would

yield Λ, second µ2π, third ρ3D more or less directly BSUV 1993-94

The comprehensive studies allow a robust analysis

• width is affected only by ρ3D to order 1/m3
b

moments also depend (weakly) on ρ3LS
• No non-local correlators ever enter

• Deviations from the HQ limit are driven by 1/mb

actually, ∝ µ2π−µ2G¿µ2π in B BPS limit

• Exact sum rules and inequalities for properly defined parameters

e.g., µ2
π>µ

2
G'0.35GeV2

How this works: illustration

〈E`〉= 1.38GeV+ 0.38[(mb−4.6GeV)− 0.71 (mc−1.15GeV) +

0.09 (µ
2
π−0.4GeV

2
)− 0.22 (ρ̃

3
D−0.12GeV

3
)]

L2 = 0.18GeV
2
+ 0.1[(mb−4.6GeV)− ...] + 0.01(mc−1.15GeV)

+ 0.04 (µ
2
π−0.4GeV

2
)− 0.04 (ρ̃

3
D−0.12GeV

3
)

L3=−0.033GeV
3
−0.03[(mb−4.6GeV)− ...] + 0(mc−1.15GeV)

+0.030 (µ
2
π−0.4GeV

2
)− 0.04 (ρ̃

3
D−0.12GeV

3
)

Practically the same combination mb−0.7mc
weak dependence on µ2π, ρ

3
D

|Vcb|
0.042

= 1 − 0.65 [(mb−4.6GeV)− ...] − 0.06 (mc−1.15GeV)

− 0.07 (µ
2
π−0.4GeV

2
) − 0.05 (ρ̃

3
D−0.12GeV

3
)

Precise value of mc is irrelevant !
Need to know with some accuracy µ2π and ρ3D

no hidden assumptions



Hadronic moments

〈M2
X〉' 4.54GeV

2
− 5 [(mb−4.6GeV)− 0.62 (mc−1.15GeV)

+ 0.13 (µ
2
π−0.4GeV

2
)−0.2 (ρ̃

3
D−0.12 )]

Nearly the same combination mb−0.7mc−0.1µ2π−0.2ρ̃3D
as in 〈E`〉

Not very constraining ... – instead checks how HQ

expansion works: Theory predicts 〈E`〉=1.377GeV

Experiment: 〈E`〉=1.383± 0.015GeV

A highly nontrivial nonperturbative check of the

OPE: the sum rule for MB−mb'650MeV verified

at a 40MeV level!

〈(M
2
X−〈M

2
X〉)

2
〉 '1.2GeV

4
+ 0.02(mb−4.6GeV)− 0.7 (mc−1.15)

+ 4.5 (µ
2
π−0.4GeV

2
)− 5.3 (ρ̃

3
D−0.12GeV

3
)

〈(M
2
X−〈M

2
X〉)

3
〉 ' 4GeV

6
− (mb−4.6GeV)− 3 (mc−1.15GeV)

+ 5 (µ
2
π−0.4GeV

2
) + 12 (ρ̃

3
D−0.12GeV

3
)

Ideally, these moments measure kinetic and Darwin
expectation values. In practice, for ρ3D only approximate
evaluation and an informative upper bound

Current sensitivity to µ2π is about 0.1GeV2, 0.1GeV3 to ρ3D



|Vcb|
0.042

= 1 − 0.13 [〈M
2
X〉−4.54GeV

2
] − 0.005 (mc−1.15GeV)

+ 0.10 (µ
2
π−0.4GeV

2
) − 0.03 (ρ̃

3
D−0.12GeV

3
)

Measuring 〈M4
X〉 and 〈M6

X〉 is the real step in implementing
the comprehensive program of extracting |Vcb|

further work is required

Example:

|Vcb| = 0.0421 · (1± 0.015SLwidth ± 0.02HQ param)
³³

³³1

. solely from DELPHI hadronic moments

Does not rely on expansion in 1/mc !

small uncertainties are not dominated by theory

(Recent theory review: hep-ph/0302262, ND – Karlsruhe – Milan)

Moreover,

assuming m̄c(mc)=1.23GeV mb(1GeV)'4.58GeV

. (too) good agreement with the theoretical expectations ?

Hadronic parameters

Λ(1GeV), µ2π(1GeV), µ2
G
(1GeV), ...
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Using the same accurate regularized definition for kinetic ({j, k})

and chromomagnetic ([j, k]) operators allows precision numerical
evaluation

Product of covariant derivatives Q̄(x)iDj P exp iDkQ(0) offset along t direction it∼1/µ

MB∗−MB ' 2
3
µ2G
mb

µ2
G
(1GeV) = 0.35

+.03

−.02
GeV2 N.U. 2001

µ2π(µ) > µ2
G
(µ) at any µ rigorous inequality

. BSUV, Voloshin 1993–1994

Physical observables, renormalon-free⇒ have definite

values in Nature

Experiment: typically µ2π(1GeV) ' (0.37±0.1)GeV2

µ2π(1GeV) > 0.45GeV2 excluded ?

Assume this for what follows



. B → D∗
+`ν̄ at zero recoil.

dw (B → D∗ + `ν̄) ∼ G2F · |Vcb|2 · |~p | ·
∣

∣F
B→D∗(~p )

∣

∣

2

F
B→D∗

is determined by

bound state dynamics

If ~p=0 ( ~pe=−~pν̄ )

almost nothing has changed!

t<0 t≥0

=⇒
ν_

e

cb

. F (~p=0) = 1 up to ‘isotopic effects’ .

Fn/p(0) = 1 +
0

mc,b
+O

(

Λ2
QCD

m2
c,b

)

+O
(

Λ3
QCD

m3
c,b

)

+ ...

. 1/mb,c effects are absent 1986 Voloshin, Shifman
1990 Luke

Important to estimate δ1/m2

. Before May 1994 : δ1/m2 ' −0.02

OPE =⇒ HQ Sum Rules . SUV, BSUV April 1994
Experiment June 1994

-δn/p >
M2

B∗−M
2
B

8m2
c

' −0.04 . rigorous bound on F (0)

. F (0) ' 0.9 actual estimate .



Numerical estimates of FD∗

FD∗=



ξA(µ)−
µ2G
3m2

c
−
µ2π−µ2G

4

(

1

m2
c
+

1

m2
b

+
2

3mcmb

)

−

ε<µ
∑

f 6=D∗

|F
B→f

|
2
+O

(

1

m3

)





1
2

– – – – – – – – – – – – – – – – – – – – – – – – –
2δ1/m2(µ)

ξ
1
2
A(µ) is the short-distance renormalization factor 0.97± 0.01

ε<µ
∑

f 6=D∗

|F
B→f
|2 = χ

[

µ2G
3m2

c

+
µ2π−µ2G

4

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+O
(

1
m3

)

]

χ describes the w f overlap deficit . guess: 0 < χ ≤ 1 SUV 1994

FD∗' ξ
1
2
A− (1+χ)

[

µ2G
6m2

c

+
µ2π−µ2G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+∆ 1
m3

]

. if χ = 0.5± 0.5 . µ ≈ 0.8GeV

FD∗'0.89− 0.015
µ2π−0.4GeV

2

0.1GeV2 ± 0.03exc ± 0.01pert
1/m3

c correction is significant!

FD∗ ∼< 0.92 for χ ' 0

χpert = 1 @ O
(

α1s
)

’t Hooft model: χ = 13
21 +

5
21

m2−β2

Λ
2
−m2+β2

− 4
21

(

%2−3
4

)

' 0.55
. Burkardt, N.U. 2000



B → D `ν near zero recoil

〈D(p2)|c̄γνb|B(p1)〉 = f+(p1 + p2)ν + f−(p1−p2)ν
f± ≡ f±(~q 2)

One amplitude J0=(MB+MD)f+(0) + (MB−MD)f−(0) at

~q = 0

HQ limit: f+ = MB+MD

2
√
MBMD

, f− = −MB−MD
MB+MD

f+

J0

2
√
MBMD

= 1− a2
(

1
mc
− 1

mb

)2

− a3
(

1
mc
− 1

mb

)2 (
1
mc

+ 1
mb

)

+ ...

Corrections are well under control and small
quantify later

Any amplitude with massless leptons depends,
however solely on f+, while only the combination of
f+ and f− has no 1/m corrections

F+ ≡
2
√
MBMD

MB+MD
f+ has 1/mQ corrections since ~J

has such a term...

Good news: we know it!



F+ = 1 +
(

Λ
2−Σ

)

(

1

mc
− 1

mb

)

MB−MD
MB+MD

−O
(

1
m2

Q

)

Thanks to inclusive decays and exact sum rules we

know Λ
2−Σ (positive, but very small ∝ µ2π−µ

2
G

3µhadr
)

Moreover, we know all power corrections are small,

the concern is rather exponential terms ∼e−2mc/µhadr

2
√
MBMD

MB +MD
f+(0) = 1.03± 0.025

All orders in 1/m in BPS, to 1/m·1/BPS2, α1
s

This formfactor is known better than for
‘gold-plated’ B → D∗

differs from existing estimates

Obsolete evaluations of the perturbative effects to be refined

If this can be measured, nothing else exclusive

may be required for |Vcb|

How do we know?



Sum Rules in the HQ Limit

%
2
−
1

4
= 2

∑

m

|τ
(m)

3/2
|
2

+
∑

n

|τ
(n)

1/2
|
2

Bj 1990

1

2
= 2

∑

m

|τ
(m)

3/2
|
2

− 2
∑

n

|τ
(n)

1/2
|
2

N.U. 2000

Λ

2
= 2

∑

m

εm|τ
(m)

3/2
|
2
+

∑

n

εn|τ
(n)

1/2
|
2

Voloshin 1992

Σ = 2
∑

m

εm|τ
(m)

3/2
|
2
− 2

∑

n

εn|τ
(n)

1/2
|
2

N.U. 2000

related to ORSAY SUM RULE LeYaouanc et al. 2000
µ2
π

3
= 2

∑

m

ε
2
m|τ

(m)

3/2
|
2
+

∑

n

ε
2
n|τ

(n)

1/2
|
2

BSUV 1994

µ2
G

3
= 2

∑

m

ε
2
m|τ

(m)

3/2
|
2
− 2

∑

n

ε
2
n|τ

(n)

1/2
|
2

BSU 1997

ρ3D
3

= 2
∑

m

ε
3
m|τ

(m)

3/2
|
2
+

∑

n

ε
3
n|τ

(n)

1/2
|
2

Chow, Pirjol 1994

−
ρ3LS
3

= 2
∑

m

ε
3
m|τ

(m)

3/2
|
2
− 2

∑

n

ε
3
n|τ

(n)

1/2
|
2

BSU 1997

Second and Fourth sum rules are superconvergent

εk = Mk −MB

〈B(v)| b̄ γ0 b |B(0)〉 = 1− %2 ~v
2

2
+O(~v 4)

〈P (1/2)(v2)|b̄γµγ5b|B(v1)〉 = −τ1/2 (v1−v2)µ
〈P (3/2)(v2)|b̄γµγ5b|B(v1)〉 = − 1√

2
i τ3/2 εµαβγ ε

∗α vβ2 v
γ
1

spin of light cloud is

{

1
2 in P (1/2)

3
2 in P (3/2)



Remarkable extension of first sum rules to v4 and higher orders:

D′ Orsay Sum Rules
LeYaouanc, Oliver, Raynal 10/2002

OPE for nonforward scattering amplitude

%2L = (2L+ 1)
∑

n

∣

∣

∣
τ
(n)

L+1
2

∣

∣

∣

2

%2L ≡
(−1)L

L!
dLξ(w)

(dw)L
w=1

L
∑

n

∣

∣

∣
τ
(n)

L+1
2

∣

∣

∣

2

−
∑

k

∣

∣

∣
τ
(k)

L−1
2

∣

∣

∣

2

= 2L−1
4

∑

n

∣

∣

∣
τ̃
(n)

(L−1)+1
2

∣

∣

∣

2

Divergent – undergo renormalization...

Peculiar: only L-th orbital waves enter for L-th derivative !
Interpretation – N.U. 2002

For instance
%22 ≥ 5

4
%2 ≥ 15

16

→ →

IW curvature IW slope

%2L ≥ (2L+ 1)!!

22LL!
%2

‘Extended BPS’ limit: All τ 2
L−1

2
suppressed ?!

all ‘spin’ inequalities are approximately saturated

ξBPS(w) =

(

2

w + 1

)
3
2 Can be directly

measured in
B→D `νw ≡ v0



Sum rules yield strict inequalities

%2 > 3
4 , Λ > 2Σ , µ2π > µ2

G
, ρ3D > −ρ3LS

ρ3D > |ρ3LS|/2

Likewise

µ2π ≥
3Λ

2

4%2−1
, ρ3D ≥

3

8

Λ
3

(%2−1
4)
2
, ρ3D ≥

(µ2π)
3/2

√

3(%2−1
4)

Similarly for W− moments

Positivity for many non-local correlators

Hold in our renormalization scheme

Maximal physical information – the case of ‘kinetic’

mass and other definitions based on the SV sum rules



Good example : %2> 3
4 N.U. 2000

Dynamic, much stronger than the Bjorken’s %2> 1
4

Moreover

µ2π(µ)− µ2G(µ) = 3ε̃2 ·
(

%2(µ)−1
4−S(µ)

)

0.5GeV<ε̃<µ

S(µ) = 2
∑

ε<µ

|τ (m)
3/2 |2−|τ

(n)
1/2|2 −→

µ→∞

1
2
+0

If the first spin sum rule is saturated at µ=1GeV then

µ2π − µ2
G
= 3ε̃2 · (%2−3

4)

Quite a constraint:
(

%2−3
4

)

=
µ2π−µ

2
G

3ε̃2 ∼< 0.2 (0.3)

at µ2
π=0.43 (0.5)GeV

2 since ε̃>0.4GeV

%2 is probed in experiment Neubert, 1993: %̂2'%2−0.09
important for Vcb hardly correct
radically improves B→D∗

extrapolation to zero recoil Excluded by experiment

Recent UKQCD lattice is quite compatible with the prediction:

%2 = 0.83
+.15 + .24

−.11− .01
hep-lat/0202029
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Question to experiment and fits:

What is the value for F (1)·|Vcb| with the constraint %̂2<1.2 ?

The whole set of the sum rule constraints is even more interesting

their strength depends on the size of µ2π



If indeed µ2π ∼< 0.45GeV2, i.e. µ2π−µ2G ¿ µ2π, µ
2
G

BPS expansion N.U. 2001

Expand around µ2π−µ2G = 0

• %2−3
4, Λ−2Σ, µ2π−µ2G, ρ3D+ρ3LS, ... are all moments of

one and the same HQ positive structure function which then
must be suppressed

• At µ2π=µ
2
G there is a functional relation ~σ~π|B〉 = 0

Reminiscent to a “BPS”-saturated state not literally ?

HQ = A0 +
(~σ~π)2

2mQ

Yet
Pz|B1

2
〉 = 0 , Px−iPy |B1

2
〉 = 0

Ultrarelativistic light cloud – antipode to NR quark models

Remarkable limit in many respects

Infracted by hard gluons rather a property of soft dynamics

Often extends Heavy Flavor (but not Spin) symmetry to all
orders in 1/mQ

No formal power corrections to mb−mc=MB−MD

only exponential in 2mc/µhadr



A number of relations, among them

%2= 3
4, Λ = 2Σ, ρ3D + ρ3LS = 0, ...

ρ3πG = −2ρ3ππ, ρ3A + ρ3πG = −(ρ3ππ + ρ3S), ...

. A chain of higher-order corrections is suppressed

Let us neglect perturbative corrections



Miracles of the BPS limit

• %2 = 3
4

• No power corrections to M=mQ+Λ for the

ground state

MB−MD = mb−mc to all orders in 1/mQ

All 1/mk
Q terms in the Hamiltonian annihilate the ground state

Foldy-Wouthuysen transformation is trivial on the ground state
at rest; no lower component of the Q bispinor appears to any
order

• For B→D amplitude

f−(q
2) = −MB−MD

MB+MD
f+(q

2) to any order in 1/mQ

• Zero recoil B→D amplitude: δ1/mk=0

regardless of mass ratio

• In B→D at zero recoil

f+ = MB+MD

2
√
MBMD

to all orders in 1/mQ



• At arbitrary velocity power corrections in B→D

vanish (or only kinematic)

f+(q)
2 =

MB+MD

2
√
MBMD

ξ
(

M2
B+M

2
D−q

2

2MBMD

)

Decay rate directly gives the IW function

Experiment: B→D slope much closer to %2 ' 0.9

Zero recoil B → D∗: δ1/m2 = −(1+χ)
(

µ2G
6m2

c
+ ...

)

usually assume 0<χ<1

1− µ2G
6m2

c
itself is just normalization, what about the overlap χ ,

maybe χ is also small?

No, even in the BPS limit spin symmetry receives large
corrections, χ is significant in B→D∗ and δ1/m2, δ1/m3, ...
are not suppressed at all

N.U. 2001

BPS : FD∗ ∼< 0.9

Likewise corrections to the shape of the B→D∗ formfactor
are way too significant

Irreducible uncertainties:

e−
2mc
µhadr ∼ a few %



Quantifying Corrections to BPS

BPS limit is not exact in QCD. How significant are

corrections to its relations? It depends

The deviation parameter ? The most natural would be

α = ‖(~σ~π) |B〉‖ ≡
√

µ2π−µ2G – dimensionfull...

Dimensionless parameter is

β = ‖π−10 (~σ~π) |B〉‖ ≡
√

3
(

%2−3
4

)

= 3

(

∑

n
|τ (n)1/2|2

)
1
2

Numerically β is not a too small number, similar in size to
generic 1/mc expansion parameter

However, µ2π−µ2G ∝ β2 should be good

We can count together powers of 1/mc and β to judge
the real quality of the HQ relations

At which order in β the BPS relations can be violated?

Not difficult to answer to the leading orders in 1/mQ...

Need classification in β to all orders in 1/mQ

N.U. 2003



• Absence of corrections to MD=mc+Λ,

MB−MD=mb−mc holds up to β2

• Σ= Λ
2 , ρ

3
LS= −ρ3D, ρ3A+ρ3πG=−(ρ3ππ+ρ3S) hold up to β2,

but ρ3πG=−2ρ3ππ only to the leading order in BPS

• Zero recoil B→D amplitude is unity up to β2

• At arbitrary velocity relation between f+ and f−
in B→D holds only to the leading order

f−(q
2) = −MB−MD

MB+MD
f+(q

2) +O(β)

• At arbitrary velocity the relations between f± in

B→D and the IW function may receive corrections ∝β1

• f+ near zero recoil receives only second order

corrections in β to any order in 1/mQ :

f+
(

(MB−MD)
2
)

=
MB+MD

2
√
MBMD

+O(β2)

Analogue of the Ademollo-Gatto theorem for the BPS
expansion

the same applies to f−
Must be quite accurate, f−/f+ can be checked in B→D τντ



Semileptonic B decays with τντ

B → D τντ amplitude does not vanish at ~q→0 due

to f− although still suppressed

can check the BPS relation between f+ and f−

Velocity range is limited, 1 ≤ w ≤ 1.43 and

BR(B → D τντ) is well predicted in terms of %2−3
4

Inclusive width B → Xc τντ is very sensitive to

mb−mc (for light leptons mb−0.6mc )

Lattices may be reliable for mb−mc from MΥ, MBc and MJ/Ψ

Energy release is limited, mb−mc−mτ'1.6GeV

sensitive to higher power corrections

probe of duality violation

possible effects of nonperturbative charm operators
〈B| b̄c c̄b |B〉 BBMU 2003

More possibilities if these decays are feasible!

Can we separately measure inclusive width for vector and axial? A good test
of inclusive vs. exclusive HQE



Conclusions:

Inclusive studies yield crucial info for HQ physics,
even for exclusive amplitudes Formerly viewed as antipodes

Power corrections to HQ symmetry are very
significant in charm. There is a subset of relations which
are stable, they are limited to the ground-state pseudoscalar B
and D mesons, but exclude spin symmetry for charm

Experiment must verify the actual value of the kinetic
expectation value, with higher accuracy and fidelity

in inclusive decays

B→D decays can be reliable theory-wise
in the BPS case

If µ2π ∼< 0.43GeV2 is confirmed then

F+(0) ' 1.03 is an accurate prediction for B→D

Many nontrivial consequences of the BPS regime

Slope %2 is close to 1 -

Fits of B→D∗ should incorporate constraints on %̂2

B→D(∗) τν and B→Xc τν offer a number of
interesting possibilities


