PQCD Approach For B Decays

Emi Kou (IPPP, University of Durham)

The pQCD collaboration

C.H. Chen, Y.Y. Keum, T. Kurimoto, H-n. Li, C.D. Lü, M. Matsumori, S. Mishima, M. Nagaishima, A.I Sanda, N. Shinha, R. Shinha, K. Ukai, M.Y. Yang, T. Yoshikawa

> FPCP 2003 @ Ecole Polytechnique, Paris 5 June, 2003

Outline

- 1. Introduction of The PQCD Approach
- 2. Some Results (CP asymmetry in $B \to \pi^+\pi^-$)
- 3. Theoretical Uncertainties (Inputs from the Light-Cone QCD Sum-Rule)
- 4. Future Prospects
- 5. Conclusions

Hadronic B Decays vs Theoretical Uncertainties

While there are plenty of interesting programs in hadronic two body decays, such as ϕ_2 determination in $B \to \pi \pi$, ϕ_3 determination in $B \to K \pi$, the strong interaction complicates our computation.

\rightarrow Attempts to go beyond the naive factorisation

A Perturbative QCD Approach Keum, Li, Sanda, see e.g. PRD63 (2001) A QCD Factorisation Beneke, Buchalla, Neubert, Sachrajda, see e.g. NPB606(2001) Inclusion of $O(\alpha_s)$ corrections to the naive factorisation approximation. Factorisation has been shown neglecting $O(1/m_b)$.

Perturbative QCD for Exclusive B decays

Based on the calculation of electromagnetic pion form factor at large Q^2 . P.Lepage, S.Brodsky, Phys. Rev. D22(1980) H.-n.Li, G.Sterman, Nucl. Phys. B381, (1992)

 \rightarrow applied to $B \rightarrow \pi$ transition form factor

R.Akhoury, G.Sterman, Y.P.Yao, Phys. Rev. D 50(1994)

H.-n.Li, H.L.Yu, Phys. Rev. D53(1996)

Hard gluon exchange is crucial!

Importance of Annihilation Diagrams

Y.Y. Keum, H.-n. Li, A.I. Sanda, PLB504 (2001)

Annihilation diagrams had been neglected due to:

- α_s suppressed \rightarrow Not in pQCD
- $\frac{1}{m_b}$ suppressed comparing to the emission diagrams.
- Angular momentum conservation forbids the V - A currents $(O_{1\sim 4})$ by a factor of m_{π}^2 (as $\pi \to e\overline{\nu}$).

However, V + A currents ($O_{5,6}$) remain accompanied by the chiral enhancement factor $m_0^{\pi} = m_{\pi}^2/(m_u + m_d)$.

Furthermore, we found that:

The large absorptive part arises from cuts on the intermediate state.

The strong phase associated with $O_{5,6}$ annihilation diagrams is nearly 90° in $B \to \pi\pi$ as well as $B \to K\pi$.

CP Violation in $B \rightarrow \pi^+ \pi^-$

Y.Y. Keum and A.I. Sanda, PRD67 (2003)

Thanks to Y.Y. Keum for the figure!

PQCD predictions: $|P/T| = 0.23^{+0.07}_{-0.05}$ and $\delta_P - \delta_T = -41^{\circ} \sim -32^{\circ}$

Form Factor Calculation in PQCD

see. e.g. Y.Y. Keum, H.-n. Li, A.I. Sanda, PRD63 (2001)

The form factor is written as a convolution of the distribution amplitude and the hard scattering amplitude:

$$\langle \pi(P_2) | \bar{b} j_{\mu} u | B(P_1) \rangle = \int_0^1 dx_1 dx_2 \int_0^\infty db_1 db_2 \mathcal{P}_{\pi}(x_2, b_2, P_2, \mu) T_H(x_1, x_2, b_1, b_2, Q, \mu) \mathcal{P}_B(x_1, b_1, P_1, \mu)$$

where x_i and b_i are momentum fraction and impact parameter of the quark inside meson, respectively. $Q^2 = -(P_2 - P_1)^2$.

• Distribution Amplitude

$$\mathcal{P}_M(x,b,P,\mu) = \exp\left[-s(x,b,Q) - s(1-x,b,Q) - 2\int_{1/b}^{\mu} \frac{d\bar{\mu}}{\bar{\mu}}\gamma_q(g(\bar{\mu}))\right]\Psi_M(x,1/b,P)$$

where s(x, b, Q) is Sudakov exponent. Ψ_M denotes a wave function of meson M.

• Hard Scattering Amplitude

$$T_{H}(x_{1}, x_{2}, b_{1}, b_{2}, Q, \mu) \sim \int \frac{d^{2}\mathbf{k}_{\perp 1, 2}}{(2\pi)^{2}} \exp[-i\mathbf{k}_{\perp 1, 2} \cdot \mathbf{b}_{1, 2}]$$

$$\frac{C_{F}}{x_{1}x_{2}Q^{2} + (\mathbf{k}_{\perp 1} - \mathbf{k}_{\perp 2})^{2}} \frac{1}{(x_{2}Q^{2} + \mathbf{k}_{\perp 2}^{2})} \exp\left[4\int_{\mu}^{t} \frac{d\bar{\mu}}{\bar{\mu}}\gamma_{q}(g(\bar{\mu}))\right]$$

where t is the largest scale appearing in T_H , $t = max(\sqrt{x}M_B, 1/b)$.

Sudakov Suppression and Applicability of PQCD

Wave Functions For Light Mesons

$$\Psi_M(P, x, \zeta) \equiv \mathbb{P}\phi_M^A(x) + m_0^M \phi_M^P(x) + \zeta m_0^M (\psi h - v \cdot n) \phi_M^{\sigma'}(x)$$

where P and x are the momentum and the momentum fraction of meson M, respectively. see e.g. P. Ball JHEP 9809(1998)

$$\langle \pi^{-}(P) | \bar{d}(z) \gamma_{\mu} \gamma_{5} u(0) | 0 \rangle \equiv -i \frac{f_{\pi}}{N_{c}} P_{\mu} \int_{0}^{1} dx e^{ix P \cdot z} \phi_{\pi}^{A}$$

$$\langle \pi^{-}(P) | \bar{d}(z) \gamma_{5} u(0) | 0 \rangle \equiv -i \frac{f_{\pi}}{N_{c}} m_{0}^{\pi^{-}} \int_{0}^{1} dx e^{ix P \cdot z} \phi_{\pi}^{P}$$

$$\langle \pi^{-}(P) | \bar{d}(z) \sigma_{\mu\nu} \gamma_{5} u(0) | 0 \rangle \equiv -i \frac{f_{\pi}}{6N_{c}} m_{0}^{\pi^{-}} \int_{0}^{1} dx e^{ix P \cdot z} \phi_{\pi}^{\sigma\prime}$$

We include up to the second (first) terms of the Gegenbauer expansion of the distribution amplitudes ϕ_{π}^{A} and ϕ_{π}^{P} (ϕ_{π}^{T}) in our calculation.

A relatively large theoretical uncertainty occurs from the parameters m_0^i ($i = e.g.\pi, K$):

$$m_0^{\pi} \equiv \frac{m_{\pi}^2}{(m_u + m_d)}, \qquad m_0^K \equiv \frac{M_K^2}{m_d + m_s}.$$

Wave Functions For *B* Mesons

see e.g. M. Bauer and M. Wirbel, Z. Phys. C42(1989) A.G.Grozin and M. Neubert, Phys. R ev. D55(1997)

$$\Psi_B(x,b) = N_B x^2 (1-x)^2 exp[-\frac{1}{2}(\frac{xM_B}{\omega_B})^2 - \frac{\omega_B^2 b^2}{2}]$$

where x is the momentum fraction carried by the spectator. $\Psi_B(x, b)$ is normalised by:

$$\int_0^1 dx \Psi_B(x, b=0) = \frac{f_B}{2\sqrt{2N_C}}$$

• Our results are sensitive to ω_B . On the other hand, since this wave function must be process independent, ω_B are constrained by our analysis for various modes.

Our present best fit value is:

$$\omega_B \simeq 0.4 \; {
m GeV}$$

B Meson Properties and $B \rightarrow \gamma e \nu$ Process

$B \rightarrow \gamma e \nu$ **Process**

The only hadron in the decay is the *B* meson, making it easier to focus on the properties of Ψ_B . G.P. Korchemsky, D. Pirjol and T.-M Yan, PRD61(2000) S. Descotes-Genon and C.T. Sachrajda, NPB650(2003) E. Lunghi, D. Pirjol and D. Wyler, NPB649(2003)

Factorisation is shown in the framework of the QCD factorisation (BBNS):

$$F^{\text{hard}}(E_{\gamma}) = \frac{f_B m_B Q_u}{2\sqrt{2}E_{\gamma}} \int_0^\infty dk_+ \frac{\Phi^B_+(k_+)}{k_+} \equiv \frac{f_B m_B Q_u}{2E_{\gamma}\lambda_B}$$

In general, one can argue that $\lambda_B \simeq \Lambda_{QCD}$ and use $\lambda_B \simeq 0.35$ GeV.

We can evaluate λ_B by using Light-Cone QCD Sum-Rule!

Evaluation of ω_B **in Light-Cone QCD Sum-Rule**

P. Ball and E.K. JHEP04(2003)

The Sum-Rule for the $B \rightarrow \gamma$ form factor is written as:

$$e^{-\overline{\Lambda}/\tau} \frac{f_B^2 m_B^2}{m_b E_{\gamma}} \frac{1}{\lambda_B} = \frac{3}{\pi^2 E_{\gamma}} \int_0^{\omega_0} d\omega \omega e^{-\omega/\tau}$$

where at the heavy quark limit, τ and ω_0 are related to the Borel parameter and the continuum threshold as $M^2 \rightarrow 2m_b \tau$ and $s_0 \rightarrow m_b^2 + 2m_b \omega_0$.

Since the Sum-Rule for the statistic limit of the decay constant $f_{\text{stat}}^2 = f_B^2 m_B^2 / m_b$ is also known, we can write λ_B as:

$$\lambda_B = \frac{\int_0^{\omega_0} d\omega \omega^2 e^{-\omega/\tau}}{\int_0^{\omega_0} d\omega \omega e^{-\omega/\tau}}$$

Using the optimised values of the continuum threshold and the Borel parameter, which depend on the $\overline{m_b} = (4.22 \pm 0.08)$ GeV, we obtain:

 $\lambda_B = 0.56 \sim 0.60 \text{ GeV} \rightarrow \omega_B = 0.48 \sim 0.51 \text{ GeV}$

Future Prospect

Theoretical Test

The NLO calculation is extremely important for pQCD approach. PQCD collaboration has already started climbing this high mountain.

The contributions from the chromomagnetic operator is now computable!
S. Mishima and A.I. Sanda, hep-ph/0305073

Phenomenological Test

✓ Use of pure annihilation processes such as $B \rightarrow D_s K^{0(*)}$ Li and C.-D. Lü, hep-ph/0305278

✓ Test of nonfactorisable contributions by $B \rightarrow D^{(*)}\pi$ Y.Y. Keum, T. Kurimoto, H.-N. Li, C.-D. Lü and A.I. Sanda, hep-ph/0305335

a_2/a_1 in PQCD Approach

Recent measurements indicate rather large value of a_2 and large imaginary part in a_2/a_1 .

CLASS II: Color-Suppressed Factorisable and Nonfactorisable $\rightarrow a_2$

Numerical Result on $B \rightarrow D\pi$ Mode

Amp	$C_D = 0.6$	$C_D = 0.8$	$C_D = 1.0$	
$f_{\pi}\xi_{ext}$	6.90	7.46	8.01	→ CLASSI factorisable
$f_D \xi_{int}$	-1.44	-1.44	-1.44	→ CLASSII factorisable
$f_B \xi$ exc	-0.01 - 0.03i	-0.02 - 0.03i	-0.02 - 0.03i	\rightarrow Annihilation factorisable
\mathcal{M}_{ext}	-0.24 + 0.57i	-0.25 + 0.60i	-0.27 + 0.65i	→ CLASSI non-factorisable
\mathcal{M}_{int}	3.34 - 3.02i	3.22 - 3.07i	3.10 - 3.12i	→ CLASSII non-factorisable
\mathcal{M}_{exc}	-0.26 - 0.89i	-0.31 - 0.95i	-0.37 - 1.02i	\rightarrow Annihilation non-factorisable

Amplitude in units of 10^{-2} GeV. C_D is a parameter entering to the wave function of D meson, which can be determined by the semileptonic $B \rightarrow D l \nu$ process.

Numerical Results on $B \rightarrow D^*(\pi, \rho, \omega)$ Modes

Quantities	$C_D = 0.6$	$C_D = 0.8$	$C_D = 1.0$	Data
$B(\bar{B}^0 \to D^+ \pi^-)$	2.37	2.74	3.13	3.0 ± 0.4
$B(\bar{B}^0 \rightarrow D^0 \pi^0)$	0.26	0.25	0.24	0.29 ± 0.05
$B(B^- \rightarrow D^0 \pi^-)$	4.96	5.43	5.91	5.3 ± 0.5
$ a_2/a_1 $ (w/o anni.)	0.47(0.51)	0.43(0.46)	0.39(0.42)	
$Arg(a_2/a_1)$ (w/o anni.)	$-42.5^{o}(-61.5^{o})$	-41.6° (-63.5°)	-41.9°(-65.3°)	

Quantities	$C_{D^*} = 0.5$	$C_{D^*} = 0.7$	$C_{D^*} = 0.9$	Data
$B(\bar{B}^0 \rightarrow D^{*+}\pi^-)$	2.16	2.51	2.88	2.76 ± 0.21
$B(\bar{B}^0 \rightarrow D^{*0} \pi^0)$	0.29	0.28	0.27	0.17 ± 0.05
$B(B^- \rightarrow D^{*0}\pi^-)$	4.79	5.26	5.75	4.60 ± 0.40
$ a_2/a_1 $ (w/o anni.)	0.52 (0.55)	0.47 (0.50)	0.43 (0.47)	
$Arg(a_2/a_1)$ (w/o anni.)	-40.5° (-61.4°)	-40.7° (-63.1°)	-40.8° (-64.8°)	

Branching ratio is in units of 10^{-3} .

Branching ratios	$C_D = 0.6$	$C_D = 0.8$	$C_D = 1.0$	Data
$B(\bar{B}^0 \to D^+ \rho^-)$	5.31	6.16	7.06	7.8 ± 1.4
$B(\bar{B}^0 \rightarrow D^0 \rho^0)$	0.15	0.15	0.15	
$B(B^- \rightarrow D^0 \rho^-)$	8.74	9.85	11.0	13.4 ± 1.8
$B(\bar{B}^0 \rightarrow D^0 \omega)$	0.14	0.14	0.14	
Branching ratios	$C_{D^*} = 0.5$	$C_{D^*} = 0.7$	$C_{D^*} = 0.9$	Data
$B(\bar{B}^0 \rightarrow D^{*+}\rho^-)$	4.89	5.67	6.51	7.3 ± 1.5
$B(\bar{B}^0 \rightarrow D^{*0} \rho^0)$	0.41	0.41	0.42	< 0.56
$B(B^- \rightarrow D^{*0}\rho^-)$	10.53	11.72	13.02	15.5 ± 3.1
$B(\bar{B}^0 ightarrow D^{*0} \omega)$	0.69	0.71	0.75	< 0.74

Conclusions

- PQCD approach is one of the most promising attempts to go beyond the naive factorisation approximation.
- A We emphasised the importance of the annihilation diagrams, which produce a large strong phase through $O_{5,6}$.
- ⇒ We showed our result for the CP asymmetry in $B \rightarrow \pi^+\pi^-$. Our predictions $P/T = (0.23^{+0.07}_{-0.05})$ and $\delta_P \delta_T = -41^\circ \sim -32^\circ$ accompanied by the Babar result determine $\phi_2 = 55^\circ \sim 100^\circ$.
- A We discussed the theoretical errors in our calculation, which is mainly caused by the parameters in distribution amplitudes of mesons.
- ⇒ We showed that our best fit value of the parameter characterising *B* meson, $\omega_B \simeq 0.4$ is comparable to the latest Light-Cone QCD Sum-Rule result.