## PQCD Approach For B Decays

## Emi Kou (IPPP, University of Durham)

The pQCD collaboration
C.H. Chen, Y.Y. Keum, T. Kurimoto, H-n. Li, C.D. Lü, M. Matsumori,
S. Mishima, M. Nagaishima, A.I Sanda, N. Shinha, R. Shinha,
K. Ukai, M.Y. Yang, T. Yoshikawa

FPCP 2003 @ Ecole Polytechnique, Paris
5 June, 2003

## Outline

1. Introduction of The PQCD Approach
2. Some Results (CP asymmetry in $B \rightarrow \pi^{+} \pi^{-}$)
3. Theoretical Uncertainties (Inputs from the Light-Cone QCD Sum-Rule)
4. Future Prospects
5. Conclusions

## Hadronic B Decays vs Theoretical Uncertainties

While there are plenty of interesting programs in hadronic two body decays, such as $\phi_{2}$ determination in $B \rightarrow \pi \pi, \phi_{3}$ determination in $B \rightarrow K \pi$, the strong interaction complicates our computation.


Attempts to go beyond the naive factorisation

* Perturbative QCD Approach Keum, Li, Sanda, see e.g. PRD63 (2001)
$\star_{0}$ QCD Factorisation Beneke, Buchalla, Neubert, Sachrajda, see e.g. NPB606(2001)
Inclusion of $\mathcal{O}\left(\alpha_{s}\right)$ corrections to the naive factorisation approximation.
Factorisation has been shown neglecting $\mathcal{O}\left(1 / m_{b}\right)$.


## Perturbative QCD for Exclusive B decays

Based on the calculation of electromagnetic pion form factor at large $Q^{2}$.
P.Lepage, S.Brodsky, Phys. Rev. D22(1980)
H.-n.Li, G.Sterman, Nucl. Phys. B381, (1992)

$\rightarrow$ applied to $B \rightarrow \pi$ transition form factor
R.Akhoury, G.Sterman, Y.P.Yao, Phys. Rev. D 50(1994)
H.-n.Li, H.L.Yu, Phys. Rev. D53(1996)


## Hard gluon exchange is crucial!

## Importance of Annihilation Diagrams

## Y.Y. Keum, H.-n. Li, A.I. Sanda, PLB504 (2001)



Annihilation diagrams had been neglected due to:

- $\alpha_{s}$ suppressed $\rightarrow$ Not in pQCD
- $\frac{1}{m_{b}}$ suppressed comparing to the emission diagrams.
- Angular momentum conservation forbids the $V-A$ currents $\left(O_{1 \sim 4}\right)$ by a factor of $m_{\pi}^{2}$ (as $\pi \rightarrow e \bar{\nu}$ ).

However, $V+A$ currents $\left(O_{5,6}\right)$ remain accompanied by the chiral enhancement factor $m_{0}^{\pi}=m_{\pi}^{2} /\left(m_{u}+m_{d}\right)$.

Furthermore, we found that:

- The large absorptive part arises from cuts on the intermediate state.
- The strong phase associated with $O_{5,6}$ annihilation diagrams is nearly $90^{\circ}$ in $B \rightarrow \pi \pi$ as well as $B \rightarrow K \pi$.


## CP Violation in $B \rightarrow \pi^{+} \pi^{-}$

Y.Y. Keum and A.I. Sanda, PRD67 (2003)


Thanks to Y.Y. Keum for the figure!

## Form Factor Calculation in PQCD

see. e.g. Y.Y. Keum, H.-n. Li, A.I. Sanda, PRD63 (2001)
The form factor is written as a convolution of the distribution amplitude and the hard scattering amplitude:

$$
\begin{aligned}
& \left\langle\pi\left(P_{2}\right)\right| \bar{b} j_{\mu} u\left|B\left(P_{1}\right)\right\rangle=\int_{0}^{1} d x_{1} d x_{2} \int_{0}^{\infty} d b_{1} d b_{2} \\
& \quad \mathcal{P}_{\pi}\left(x_{2}, b_{2}, P_{2}, \mu\right) T_{H}\left(x_{1}, x_{2}, b_{1}, b_{2}, Q, \mu\right) \mathcal{P}_{B}\left(x_{1}, b_{1}, P_{1}, \mu\right)
\end{aligned}
$$

where $x_{i}$ and $b_{i}$ are momentum fraction and impact parameter of the quark inside meson, respectively. $Q^{2}=-\left(P_{2}-P_{1}\right)^{2}$.

- Distribution Amplitude

$$
\begin{aligned}
& \mathcal{P}_{M}(x, b, P, \mu)= \\
& \quad \exp \left[-s(x, b, Q)-s(1-x, b, Q)-2 \int_{1 / b}^{\mu} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{q}(g(\bar{\mu}))\right] \Psi_{M}(x, 1 / b, P)
\end{aligned}
$$

where $s(x, b, Q)$ is Sudakov exponent. $\Psi_{M}$ denotes a wave function of meson M.

- Hard Scattering Amplitude

$$
\begin{aligned}
T_{H}\left(x_{1}, x_{2}, b_{1}, b_{2}, Q, \mu\right) \sim \int \frac{d^{2} \mathbf{k}_{\perp 1,2}}{(2 \pi)^{2}} \exp \left[-i \mathbf{k}_{\perp 1,2} \cdot \mathbf{b}_{1,2}\right] \\
\frac{C_{F}}{x_{1} x_{2} Q^{2}+\left(\mathbf{k}_{\perp 1}-\mathbf{k}_{\perp 2}\right)^{2}} \frac{1}{\left(x_{2} Q^{2}+\mathbf{k}_{\perp 2}^{2}\right)} \exp \left[4 \int_{\mu}^{t} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{q}(g(\bar{\mu}))\right]
\end{aligned}
$$

where $t$ is the largest scale appearing in $T_{H}, t=\max \left(\sqrt{x} M_{B}, 1 / b\right)$.

## Sudakov Suppression and Applicability of PQCD



## Wave Functions For Light Mesons

$$
\Psi_{M}(P, x, \zeta) \equiv \mathscr{P} \phi_{M}^{A}(x)+m_{0}^{M} \phi_{M}^{P}(x)+\zeta m_{0}^{M}(v h-v \cdot n) \phi_{M}^{\sigma \prime}(x)
$$

where $P$ and $x$ are the momentum and the momentum fraction of meson $M$, respectively.

## see e.g. P. Ball JHEP 9809(1998)

$$
\begin{aligned}
\left\langle\pi^{-}(P)\right| \bar{d}(z) \gamma_{\mu} \gamma_{5} u(0)|0\rangle & \equiv-i \frac{f_{\pi}}{N_{c}} P_{\mu} \int_{0}^{1} d x e^{i x P \cdot z} \phi_{\pi}^{A} \\
\left\langle\pi^{-}(P)\right| \bar{d}(z) \gamma_{5} u(0)|0\rangle & \equiv-i \frac{f_{\pi}}{N_{c}} m_{0}^{\pi^{-}} \int_{0}^{1} d x e^{i x P \cdot z_{0}} \phi_{\pi}^{P} \\
\left\langle\pi^{-}(P)\right| \bar{d}(z) \sigma_{\mu \nu} \gamma_{5} u(0)|0\rangle & \equiv-i \frac{f_{\pi}}{6 N_{c}} m_{0}^{\pi^{-}} \int_{0}^{1} d x e^{i x P \cdot z^{\sigma \prime}} \phi_{\pi}^{\sigma \prime}
\end{aligned}
$$

We include up to the second (first) terms of the Gegenbauer expansion of the distribution amplitudes $\phi_{\pi}^{A}$ and $\phi_{\pi}^{P}\left(\phi_{\pi}^{T}\right)$ in our calculation.

A relatively large theoretical uncertainty occurs from the parameters $m_{0}^{i}$ ( $i=e . g . \pi, K$ ):

$$
m_{0}^{\pi} \equiv \frac{m_{\pi}^{2}}{\left(m_{u}+m_{d}\right)}, \quad m_{0}^{K} \equiv \frac{M_{K}^{2}}{m_{d}+m_{s}} .
$$

## Wave Functions For $B$ Mesons

$$
\Psi_{B}(x, b)=N_{B} x^{2}(1-x)^{2} \exp \left[-\frac{1}{2}\left(\frac{x M_{B}}{\omega_{B}}\right)^{2}-\frac{\omega_{B}^{2} b^{2}}{2}\right]
$$

where $x$ is the momentum fraction carried by the spectator. $\Psi_{B}(x, b)$ is normalised by:

$$
\int_{0}^{1} d x \Psi_{B}(x, b=0)=\frac{f_{B}}{2 \sqrt{2 N_{C}}}
$$



- Our results are sensitive to $\omega_{B}$. On the other hand, since this wave function must be process independent, $\omega_{B}$ are constrained by our analysis for vari${ }_{x}$ ous modes.

Our present best fit value is:

$$
\omega_{B} \simeq 0.4 \mathrm{GeV}
$$

## $B$ Meson Properties and $B \rightarrow \gamma e \nu$ Process

## $B \rightarrow$ रè Process


$\star_{0}$ The only hadron in the decay is the $B$ meson, making it easier to focus on the properties of $\Psi_{B}$.
G.P. Korchemsky, D. Pirjol and T.-M Yan, PRD61 (2000)
S. Descotes-Genon and C.T. Sachrajda, NPB650(2003)
E. Lunghi, D. Pirjol and D. Wyler, NPB649(2003)

Factorisation is shown in the framework of the QCD factorisation (BBNS):

$$
F^{\text {hard }}\left(E_{\gamma}\right)=\frac{f_{B} m_{B} Q_{u}}{2 \sqrt{2} E_{\gamma}} \int_{0}^{\infty} d k_{+} \frac{\stackrel{\Phi}{+}\left(k_{+}\right)}{k_{+}} \equiv \frac{f_{B} m_{B} Q_{u}}{2 E_{\gamma} \lambda_{B}}
$$

In general, one can argue that $\lambda_{B} \simeq \Lambda_{Q C D}$ and use $\lambda_{B} \simeq 0.35 \mathrm{GeV}$.
We can evaluate $\lambda_{B}$ by using Light-Cone QCD Sum-Rule!

## Evaluation of $\omega_{B}$ in Light-Cone QCD Sum-Rule

P. Ball and E.K. JHEP04(2003)

The Sum-Rule for the $B \rightarrow \gamma$ form factor is written as:

$$
e^{-\bar{\Lambda} / \tau} \frac{f_{B}^{2} m_{B}^{2}}{m_{b} E_{\gamma}} \frac{1}{\lambda_{B}}=\frac{3}{\pi^{2} E_{\gamma}} \int_{0}^{\omega_{0}} d \omega \omega e^{-\omega / \tau}
$$

where at the heavy quark limit, $\tau$ and $\omega_{0}$ are related to the the Borel parameter and the continuum threshold as $M^{2} \rightarrow 2 m_{b} \tau$ and $s_{0} \rightarrow m_{b}^{2}+2 m_{b} \omega_{0}$.

Since the Sum-Rule for the statistic limit of the decay constant $f_{\text {stat }}^{2}=$ $f_{B}^{2} m_{B}^{2} / m_{b}$ is also known, we can write $\lambda_{B}$ as:

$$
\lambda_{B}=\frac{\int_{0}^{\omega_{0}} d \omega \omega^{2} e^{-\omega / \tau}}{\int_{0}^{\omega_{0}} d \omega \omega e^{-\omega / \tau}}
$$

Using the optimised values of the continuum threshold and the Borel parameter, which depend on the $\overline{m_{b}}=(4.22 \pm 0.08) \mathrm{GeV}$, we obtain:

$$
\lambda_{B}=0.56 \sim 0.60 \mathrm{GeV} \rightarrow \omega_{B}=0.48 \sim 0.51 \mathrm{GeV}
$$

## Future Prospect

* Theoretical Test The NLO calculation is extremely important for pQCD approach. PQCD collaboration has already started climbing this high mountain.
\#The contributions from the chromomagnetic operator is now computable!
S. Mishima and A.I. Sanda, hep-ph/0305073
* Phenomenological Test
$\checkmark$ Use of pure annihilation processes such as $B \rightarrow D_{s} K^{0(*)}$
Li and C.-D. Lü, hep-ph/0305278
$\boldsymbol{\nu}$ Test of nonfactorisable contributions by $B \rightarrow D^{(*)} \pi$
Y.Y. Keum, T. Kurimoto, H.-N. Li, C.-D. Lü and A.I. Sanda, hep-ph/0305335


## $a_{2} / a_{1}$ in PQCD Approach

Recent measurements indicate rather large value of $a_{2}$ and large imaginary part in $a_{2} / a_{1}$.

CLASS I: Color-Allowed Factorisable and Nonfactorisable $\rightarrow a_{1}$


CLASS II: Color-Suppressed Factorisable and Nonfactorisable $\rightarrow a_{2}$

(c)

(d)

## Numerical Result on $B \rightarrow D \pi$ Mode

| Amp | $C_{D}=0.6$ | $C_{D}=0.8$ | $C_{D}=1.0$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $f_{\pi} \xi_{\text {ext }}$ | 6.90 | 7.46 | 8.01 | $\rightarrow$ CLASSI factorisable |
| $f_{D} \xi_{\text {int }}$ | -1.44 | -1.44 | -1.44 | $\rightarrow$ CLASSII factorisable |
| $f_{B} \xi_{\text {exc }}$ | -0.01-0.03i | $-0.02-0.03 i$ | $-0.02-0.03 i$ | $\rightarrow$ Annihilation factorisable |
| $\mathcal{M}_{\text {ext }}$ | $-0.24+0.57 i$ | $-0.25+0.60 i$ | $-0.27+0.65 i$ | $\rightarrow$ CLASSI non-factorisable |
| $\mathcal{M}_{\text {int }}$ | 3.34-3.02i | $3.22-3.07 i$ | $3.10-3.12 i$ | $\rightarrow$ CLASSII non-factorisable |
| Mexc | -0.26-0.89i | $-0.31-0.95 i$ | $-0.37-1.02 i$ | $\rightarrow$ Annihilation non-fa |
|  | Amplitude in units of $10^{-2} \mathrm{GeV} . C_{D}$ is a parameter entering to the wave function of $D$ meson, which can be determined by the semileptonic $B \rightarrow$ Dlı process. |  |  |  |

## Numerical Results on $B \rightarrow D^{*}(\pi, \rho, \omega)$ Modes

| Quantities | $C_{D}=0.6$ | $C_{D}=0.8$ | $C_{D}=1.0$ | Data |
| :--- | :---: | :---: | :---: | :---: |
| $B\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)$ | 2.37 | 2.74 | 3.13 | $3.0 \pm 0.4$ |
| $B\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)$ | 0.26 | 0.25 | 0.24 | $0.29 \pm 0.05$ |
| $B\left(B^{-} \rightarrow D^{0} \pi^{-}\right)$ | 4.96 | 5.43 | 5.91 | $5.3 \pm 0.5$ |
| $\left\|a_{2} / a_{1}\right\|$ (w/o anni. $)$ | $0.47(0.51)$ | $0.43(0.46)$ | $0.39(0.42)$ |  |
| $\operatorname{Arg}\left(a_{2} / a_{1}\right)$ (w/o anni.) | $-42.5^{\circ}\left(-61.5^{\circ}\right)$ | $-41.6^{\circ}\left(-63.5^{\circ}\right)$ | $-41.9^{\circ}\left(-65.3^{\circ}\right)$ |  |


| Quantities | $C_{D^{*}}=0.5$ | $C_{D^{*}}=0.7$ | $C_{D^{*}}=0.9$ | Data |
| :--- | :---: | :---: | :---: | :---: |
| $B\left(\bar{B}^{0} \rightarrow D^{*+} \pi^{-}\right)$ | 2.16 | 2.51 | 2.88 | $2.76 \pm 0.21$ |
| $B\left(\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}\right)$ | 0.29 | 0.28 | 0.27 | $0.17 \pm 0.05$ |
| $B\left(B^{-} \rightarrow D^{* 0} \pi^{-}\right)$ | 4.79 | 5.26 | 5.75 | $4.60 \pm 0.40$ |
| $\left\|a_{2} / a_{1}\right\|($ w/o anni. $)$ | $0.52(0.55)$ | $0.47(0.50)$ | $0.43(0.47)$ |  |
| $\operatorname{Arg}\left(a_{2} / a_{1}\right)$ (w/o anni.) | $-40.5^{\circ}\left(-61.4^{\circ}\right)$ | $-40.7^{\circ}\left(-63.1^{o}\right)$ | $-40.8^{\circ}\left(-64.8^{\circ}\right)$ |  |

Branching ratio is in units of $10^{-3}$.

| Branching ratios | $C_{D}=0.6$ | $C_{D}=0.8$ | $C_{D}=1.0$ | Data |
| :--- | :---: | :---: | :---: | :---: |
| $B\left(\bar{B}^{0} \rightarrow D^{+} \rho^{-}\right)$ | 5.31 | 6.16 | 7.06 | $7.8 \pm 1.4$ |
| $B\left(\bar{B}^{0} \rightarrow D^{0} \rho^{0}\right)$ | 0.15 | 0.15 | 0.15 |  |
| $B\left(B^{-} \rightarrow D^{0} \rho^{-}\right)$ | 8.74 | 9.85 | 11.0 | $13.4 \pm 1.8$ |
| $B\left(\bar{B}^{0} \rightarrow D^{0} \omega\right)$ | 0.14 | 0.14 | 0.14 |  |
| Branching ratios | $C_{D^{*}}=0.5$ | $C_{D^{*}}=0.7$ | $C_{D^{*}}=0.9$ | Data |
| $B\left(\bar{B}^{0} \rightarrow D^{*+} \rho^{-}\right)$ | 4.89 | 5.67 | 6.51 | $7.3 \pm 1.5$ |
| $B\left(\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}\right)$ | 0.41 | 0.41 | 0.42 | $<0.56$ |
| $B\left(B^{-} \rightarrow D^{* 0} \rho^{-}\right)$ | 10.53 | 11.72 | 13.02 | $15.5 \pm 3.1$ |
| $B\left(\bar{B}^{0} \rightarrow D^{* 0} \omega\right)$ | 0.69 | 0.71 | 0.75 | $<0.74$ |

## Conclusions

\& PQCD approach is one of the most promising attempts to go beyond the naive factorisation approximation.
\& We emphasised the importance of the annihilation diagrams, which produce a large strong phase through $O_{5,6}$.
$\&_{0}$ We showed our result for the CP asymmetry in $B \rightarrow \pi^{+} \pi^{-}$. Our predictions $P / T=\left(0.23_{-0.05}^{+0.07}\right)$ and $\delta_{P}-\delta_{T}=-41^{\circ} \sim-32^{\circ}$ accompanied by the Babar result determine $\phi_{2}=55^{\circ} \sim 100^{\circ}$.
$\star_{0}$ We discussed the theoretical errors in our calculation, which is mainly caused by the parameters in distribution amplitudes of mesons.
$\leftrightarrow$ We showed that our best fit value of the parameter characterising $B$ meson, $\omega_{B} \simeq 0.4$ is comparable to the latest Light-Cone QCD SumRule result.

