SOME ASPECTS OF CHARMLESS B DECAYS FROM QCD LCSR

Blaženka Melić

— Universität Karlsruhe and Rudjer Bošković Institute, Zagreb —

Contents	2
1 CHARMLESS TWO-BODY B DECAYS	3
2 MATRIX ELEMENTS CALCULATED IN LCSR	5
 CONTRIBUTIONS IN THE EMISSION TOPOLOGY CONTRIBUTIONS IN THE PENGUIN TOPOLOGY 	
3 IMPLICATIONS TO $\alpha_{CP}^{\rm dir}$	9
4 CONCLUSIONS	11

- charmless two-body B decays → search for CP violation
- extraction of $\gamma = arg(V_{ub}^*)$: $B \to \pi\pi$ and $B \to \pi K$ decays
 - \Rightarrow knowledge about hadronic matrix elements $\langle M_1 M_2 | H_{weak} | B \rangle$ is required

MODELS FOR CALCULATING MATRIX ELEMENTS:

- ▶ PQCD APPROACH (Keum, Sanda, Li (2001))
- - in the $m_b\to\infty$ limit, hadronic matrix elements for $B\to D+light$ and $B\to light+light$ decays factorize
 - leading nonfactorizable $O(\alpha_s)$ effects can be studied systematically
 - it does not apply for $B \to light + D$ decays
 - \Rightarrow what about nonfactorizable nonperturbative Λ_{QCD}/m_b corrections ?

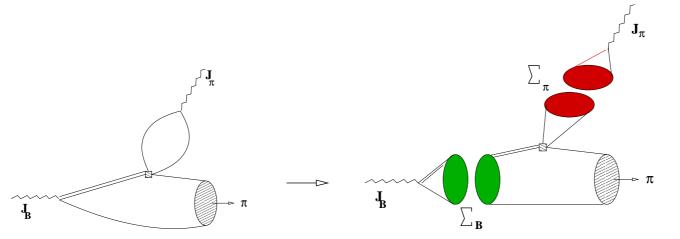
FACTORIZATION of the matrix elements ? :

$$\begin{split} \text{i.e. } \langle \pi\pi| \mathfrak{O}_i | B \rangle &= \langle \pi| \overline{d} \Gamma_\mu \mathfrak{u} | 0 \rangle \langle \pi| \overline{\mathfrak{u}} \Gamma^\mu b | B \rangle [1 + O(\alpha_s) + O(\Lambda_{QCD}/m_b)] \\ &= i m_b^2 f_\pi F_{B \to \pi}^+(m_\pi^2) [1 + O(\alpha_s) + O(\Lambda_{QCD}/m_b)] \end{split}$$

- is it enough to keep only leading terms in $1/m_b$, i.e how large are $O(\Lambda_{QCD}/m_b)$ corrections ?
- large enhancement of penguin ("charming penguin") contributions? (Ciuchini et al.) ⇔ large O(Λ/m_b) corrections?
 - -large strong phases from penguin amplitudes?
- ISOSPIN & SU(3) RELATIONS:

$$i.e. \ A(B^- \to \pi^- \overline{K}^0) + \sqrt{2} A(B^- \to \pi^0 K^-) = \sqrt{2} \frac{V_{us}}{V_{ud}} A(B^- \to \pi^- \pi^0) (1 + \Delta_{SU(3)})$$

-
$$\Delta_{SU(3)} = 5\%$$
 or 20%? $(f_K/f_{\pi}, F_{B\to K}/F_{B\to \pi}, \delta(m_s)...)$

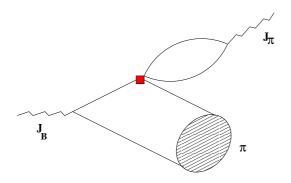

Khodjamirian, Mannel, Melcher - work in progess

 $B \to \pi\pi$ FROM LCSR:

$$F_{\nu}^{(0)}(p,q,k) = \int d^4x e^{-i(p-q)x} \int d^4y e^{i(p-k)y} \langle 0|T\{j_{\nu,5}^{(\pi)}(y)O(0)j_5^{(B)}(x)\}|\pi(q)\rangle$$

• interpolating currents for a pion and a B meson:

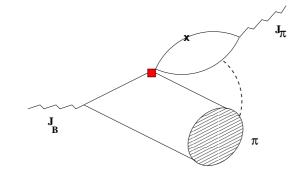
$$j_{\gamma,5}^{(\pi)} = \overline{u}\gamma_{\gamma}\gamma_{5}d$$
 $j_{\gamma,5}^{(B)} = m_{b}\overline{b}i\gamma_{5}d$



quark-hadron duality $\rightarrow \langle \pi\pi | \Theta | B \rangle$

▶ LEADING CONTRIBUTION

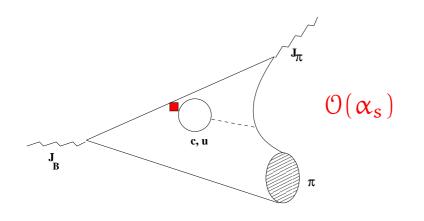
⇒ factorizable amplitude

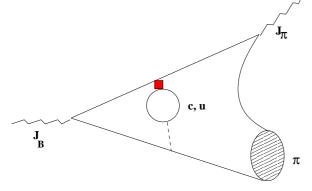

$$\langle \pi^- \pi^+ | \mathcal{O}_1 | B \rangle_{\mathsf{E}} \simeq i m_B^2 \, \mathsf{f}_\pi \, (\mathsf{F}^+_{\mathsf{B} \to \pi}(0))_{\mathsf{LCSR}}$$

- $O(\alpha_s)$ corrections :
 - calculated in QCD factorization
 - in LCSR model two-loop effects

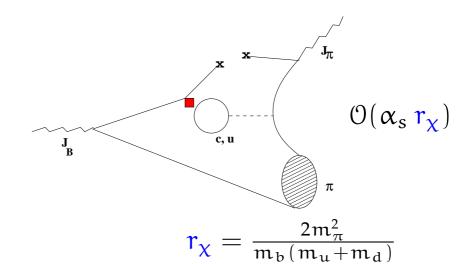
Q1: NONFACTORIZABLE $O(\Lambda/m_b)$ corrections from

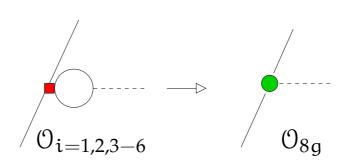
$$\mathfrak{O}_2 \sim 2 \ \tilde{\mathfrak{O}}_1 = (\overline{d} \Gamma_{\!\mu} \tfrac{\lambda^\alpha}{2} u) (\overline{u} \Gamma^\mu \tfrac{\lambda^\alpha}{2} b)$$

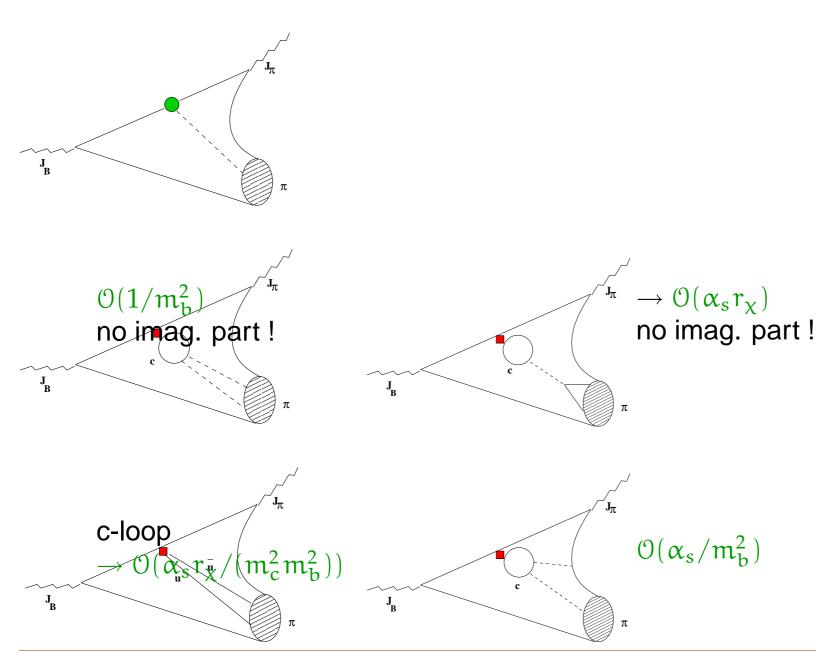



A1: $O(\Lambda/m_b)$ corrections are small, but they are of the same order as $O(\alpha_s)$ corrections calculated in QCD factorization

Q2 : NONFACTORIZABLE $O(\Lambda/m_b)$ CONTRIBUTIONS FROM PENGUIN LOOPS


(Khodjamirian, Mannel, Melić)


"hard contributions":



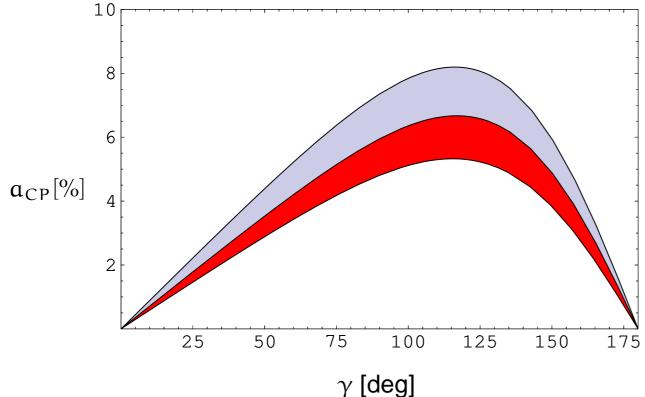
 $O(\alpha_s/m_b)$ no imag. part !

"soft contributions"

 \triangleright how large are penguin-loop corrections and strong phases produced by the penguins at finite m_b ?

A2: \Rightarrow IMPLICATIONS TO a_{CP}^{dir} :

$$\mathcal{A}(\overline{B}^0 \to \pi^+ \pi^-) = A_{\text{fact}} \begin{bmatrix} \equiv T_0 + P^u \\ V_{ub}V_{ud}^* & T \\ \end{bmatrix} + V_{cb}V_{cd}^* + \underbrace{EW + A}_{\text{neglected}}$$


$$A_{fact} = i \frac{G_F}{\sqrt{2}} m_B^2 f_{\pi} F_{B \to \pi}^+$$

 \rightarrow we can neglect hard $O(\alpha_s)$ corrections to T and P - small with small strong phases \Rightarrow strong δ phases are generated mainly by the penguin-loop contributions:

$$\mathcal{A}(\overline{B}^0 \to \pi^+ \pi^-) \sim e^{-i\gamma} - \frac{1}{R_b} \frac{|P|}{|T|} e^{i(\delta_{P_{loop}^c} - \delta_{P_{loop}^u})} \qquad R_b = \frac{|V_{ud}V_{ub}|}{|V_{cd}V_{cb}|}$$

$$= e^{-i\gamma} - |R| e^{i(\delta_{P_{loop}^c} - \delta_{P_{loop}^u})}$$

$$\alpha_{CP}^{\text{dir}} = \frac{-2|R| \frac{\sin \gamma \sin(\delta_{\text{Ploop}}^c} - \delta_{\text{Ploop}}^u}{1 - 2|R| \frac{\cos \gamma}{1 + |R|^2}}$$

$$R \equiv -\frac{1}{R_b} \frac{P}{T}$$

upper curve: $m_b \rightarrow \infty$ result red region \rightarrow LSCR result

no additional uncert. included (annihilation ? , $\delta(V_{ub}/V_{cb})$)

violet region: $\rightarrow 1/m_b$ corrections!

$$\frac{(|R| e^{i\delta})_{|_{\substack{m_b \to \infty \\ \mu = m_b/2}}} = 0.24 e^{i(9.1^{\circ})} }{(|R| e^{i\delta})_{|_{\substack{L C S R \\ \mu = m_b/2}}} = 0.25 e^{i(5.9^{\circ})}$$

LCSR PROVIDE AN EFFICENT METHOD FOR CALCULATING NONFACTORIZABLE CORRECTIONS IN (CHARMLESS) B DECAYS:

- ightharpoonup A1: NONFACTORIZABLE $O(\Lambda/m_b)$ CORRECTIONS IN THE EMISSION TOPOLOGY ARE SMALL
 - ▷ CAVEAT:

IN COLOR-SUPPRESSED B DECAYS NONFACTOR. CORRECTIONS ARE LARGE!

- LCSR calculation for B \rightarrow J/ ψ K decay (Melić (2003))
- BELLE and CLEO (2002) on $\overline B^0\to D^{(*)0}\pi^0$
- Alpha A2: NONFACTORIZABLE $O(\Lambda/m_b)$ CORRECTIONS IN THE PENGUIN TOPOLOGY ARE SMALL:
 - both real and imaginary parts ⇒ SMALL STRONG PHASES
 - BUT ACCUMULATE TO A NOTICABLE EFFECT IN \mathfrak{a}_{CP}^{dir} ! (numerically smaller than in the $\mathfrak{m}_b \to \infty$ limit)

ightharpoonup Q3: SU(3) BREAKING EFFECTS (B ightharpoonup ?

A3: work in progress

▶ Q4: ANNIHILATION EFFECTS ?

A4: future work ??????