New Physics and $B o V_1 V_2$ Decays

David London Université de Montréal

June 4, 2003 FPCP2003

Talk based on work done in collaboration with A. Datta [hep-ph/0303159] and N. Sinha and R. Sinha [hep-ph/0304230]

Triple Products

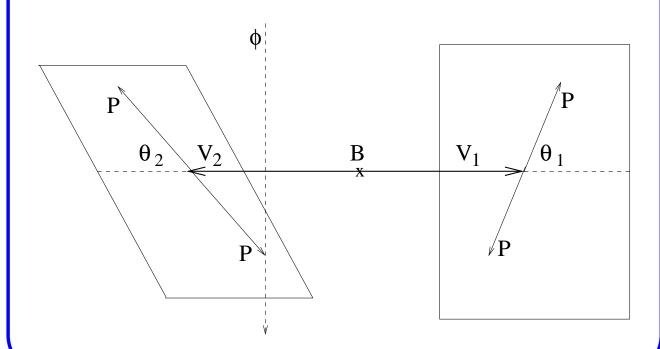
Problem with indirect CP violation in $B \to V_1 V_2$ decays: $V_1 V_2$ not a CP eigenstate.

3 helicity amplitudes: A_0 , A_{\parallel} (CP-even), A_{\perp} (CP-odd):

$$M = A_0 \varepsilon_1^{*L} \cdot \varepsilon_2^{*L} - \frac{1}{\sqrt{2}} A_{\parallel} \vec{\varepsilon}_1^{*T} \cdot \vec{\varepsilon}_2^{*T} - \frac{i}{\sqrt{2}} A_{\perp} \vec{\varepsilon}_1^{*T} \times \vec{\varepsilon}_2^{*T} \cdot \hat{p} ,$$

where \hat{p} is final-state momentum, and $\varepsilon_{1,2}$ are polarizations of vector mesons.

Well known: can separate helicity amplitudes using a (time-dependent) angular analysis. Can then measure indirect CP asymmetries in each helicity state.



However: angular analysis contains more information, due to interference of CP-even and CP-odd amplitudes. The time-integrated differential decay rate contains 6 angular terms:

$$\begin{split} \frac{d\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\phi} &\sim |A_{0}|^{2}\cos^{2}\theta_{1}\cos^{2}\theta_{2} \\ &+ \frac{|A_{\perp}|^{2}}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin^{2}\phi \\ &+ \frac{|A_{\parallel}|^{2}}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\cos^{2}\phi \\ &+ \frac{\mathrm{Re}(A_{0}A_{\parallel}^{*})}{2\sqrt{2}}\sin2\theta_{1}\sin2\theta_{2}\cos\phi \\ &- \frac{\mathrm{Im}(A_{\perp}A_{0}^{*})}{2\sqrt{2}}\sin2\theta_{1}\sin2\theta_{2}\sin\phi \\ &- \frac{\mathrm{Im}(A_{\perp}A_{\parallel}^{*})}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin2\phi \;. \end{split}$$

The final two terms involve the *triple product* $\bar{\varepsilon}_1^{*_T} \times \bar{\varepsilon}_2^{*_T} \cdot \hat{p}$: odd under time reversal (T). (Note: full angular analysis not necessary to measure TP's.)

Well-known: triple product signals are not necessarily CP-violating – can be faked by strong phases. To obtain true CP-violating signal: compare TP in $B \to V_1 V_2$ with that in $\bar{B} \to \bar{V}_1 \bar{V}_2$. The CP-violating TP is found by adding the two T-odd asymmetries:

$${\cal A}_T \equiv {1\over 2}(A_T + \bar A_T) \ .$$

Thus, neither tagging nor time dependence is necessary to measure TP's — can in principle combine measurements of charged and neutral B decays.

Triple products complementary to direct CP asymmetries:

$$\mathcal{A}_{CP}^{dir} \propto \sin \phi \sin \delta$$

 $\mathcal{A}_{T} \propto \sin \phi \cos \delta$.

Unlike \mathcal{A}_{CP}^{dir} , triple product doesn't vanish if $\delta=0$.

Triple products in SM

All CP-violating effects require the interference of two amplitudes, with different weak phases. Decays in the SM dominated by $b\to c\bar c s$ or $b\to s\bar s s$ do not satisfy this. E.g. no TP's expected in $B\to J/\psi K^*$, $B\to \phi K^*$, $B\to D_s^*D^*$, etc.

Other $B \to V_1 V_2$ decays: within factorization, amplitude is:

$$\sum_{\mathcal{O},\mathcal{O}'} \left\{ \left\langle V_1 \right| \mathcal{O} \left| 0 \right\rangle \left\langle V_2 \right| \mathcal{O}' \left| B \right\rangle + \left\langle V_2 \right| \mathcal{O} \left| 0 \right\rangle \left\langle V_1 \right| \mathcal{O}' \left| B \right\rangle \right\} .$$

TP's are a *kinematical* CP-violating effect \Longrightarrow both amplitudes must be present, with a relative weak phase.

E.g. $B_d^0 \to D^{*+}D^{*-}$. There is a tree $(V_{cb}^*V_{cd})$ and a penguin $(V_{tb}^*V_{td})$ contribution. Two amplitudes, a relative weak phase \Longrightarrow there is a triple product, right?

No: both amplitudes contribute to $\langle D^{*+}|\,\mathcal{O}\,|0\rangle\,\langle D^{*-}|\,\mathcal{O}'\,|B\rangle$; there is no $\langle D^{*-}|\,\mathcal{O}\,|0\rangle\,\langle D^{*+}|\,\mathcal{O}'\,|B\rangle$. (I.e. in the SM one has only $\bar{b}\to\bar{c}$; $\bar{b}\not\to c$.) Thus, there is no TP.

Which $B \to V_1 V_2$ decays are expected to yield large triple products in the SM? Answer: None!

- 1. If $V_1 = V_2$, no TP. Therefore, if V_1 and V_2 related by symmetry, TP is suppressed by size of symmetry breaking.
- 2. Longitudinal amplitude (A_0) much larger than transverse amplitudes $(A_{\parallel,\perp})$. Therefore, TP's suppressed by at least one power of m_V/m_B .
- 3. Interfering amplitudes typically different in size, leading to further suppression of TP's.

Upshot: we find all TP's involving light vector mesons are either expected to vanish or be very small in SM \Longrightarrow excellent place to search for new physics! (Nonfactorizable effects do not change this conclusion.) If large TP found, indicates new physics with large couplings to the right-handed b-quark.

Example: $A_{CP}(J/\psi K_S) \neq A_{CP}(\phi K_S)$. One explanation: contributions to $B \to \phi K_S$ from SUSY with R-parity violation. If so, will also contribute to $B \to \phi K^* \Longrightarrow$ TP's. In SM, TP's vanish; in this model of new physics, can get very large TP asymmetries: 15–20%!

Time-dependent Angular Analysis

Consider B decays which in the SM are dominated by one decay amplitude (e.g. $B \to J/\psi K$, ϕK , etc.). Suppose there is a contributing new-physics amplitude, with a new weak phase. How to see it?

Direct CP violation + triple-product correlation. But can get much more information if a time-dependent angular analysis of the corresponding $B^0(t) \to V_1 V_2$ decay can be performed.

Write:

$$A_{\lambda} \equiv Amp(B \to V_1 V_2)_{\lambda} = a_{\lambda} e^{i\delta_{\lambda}^a} + b_{\lambda} e^{i\phi} e^{i\delta_{\lambda}^b} ,$$

$$\bar{A}_{\lambda} \equiv Amp(\bar{B} \to \bar{V}_1 \bar{V}_2)_{\lambda} = a_{\lambda} e^{i\delta_{\lambda}^a} + b_{\lambda} e^{-i\phi} e^{i\delta_{\lambda}^b} ,$$

where $\lambda = \{0, ||, \perp\}$. The a_{λ} 's and b_{λ} 's are the SM and NP amplitudes, respectively.

The time-dependent decay rate is given by

$$\Gamma(\overline{B})(t) \to V_1 V_2) \sim \sum_{\lambda \le \sigma} \left(\Lambda_{\lambda \sigma} \pm \Sigma_{\lambda \sigma} \cos(\Delta M t) \right)$$

$$\mp \rho_{\lambda\sigma} \sin(\Delta M t) g_{\lambda} g_{\sigma}$$
.

The g_{λ} are functions of the kinematic angles θ_1 , θ_2 , ϕ .

There are 18 observables, all functions of the A_{λ} and \bar{A}_{λ} . E.g.

$$\Lambda_{\lambda\lambda} = \frac{1}{2}(|A_{\lambda}|^{2} + |\bar{A}_{\lambda}|^{2})$$

$$\Sigma_{\lambda\lambda} = \frac{1}{2}(|A_{\lambda}|^{2} - |\bar{A}_{\lambda}|^{2})$$

$$\Lambda_{\perp i} = -\operatorname{Im}\left(A_{\perp}A_{i}^{*} - \bar{A}_{\perp}\bar{A}_{i}^{*}\right)$$

$$\rho_{ii} = -\operatorname{Im}\left(\frac{q}{p}A_{i}^{*}\bar{A}_{i}\right)$$

If there is no new physics (i.e. $b_{\lambda}=0$), there are 6 theoretical parameters: 3 a_{λ} 's, 2 strong phase differences, and the phase of $B^0-\bar{B}^0$ mixing (q/p) \Longrightarrow 12 relations among the observables:

$$\begin{split} & \Sigma_{\lambda\lambda} = \Lambda_{\perp i} = \Sigma_{\parallel 0} = 0 \\ & \frac{\rho_{ii}}{\Lambda_{ii}} = -\frac{\rho_{\perp \perp}}{\Lambda_{\perp \perp}} = \frac{\rho_{\parallel 0}}{\Lambda_{\parallel 0}} \\ & \Lambda_{\parallel 0} = \frac{1}{2\Lambda_{\perp \perp}} \left[\frac{\Lambda_{\lambda\lambda}^2 \rho_{\perp 0} \rho_{\perp \parallel} + \Sigma_{\perp 0} \Sigma_{\perp \parallel} (\Lambda_{\lambda\lambda}^2 - \rho_{\lambda\lambda}^2)}{\Lambda_{\lambda\lambda}^2 - \rho_{\lambda\lambda}^2} \right] \\ & \frac{\rho_{\perp i}^2}{4\Lambda_{\perp \perp} \Lambda_{ii} - \Sigma_{\perp i}^2} = \frac{\Lambda_{\perp \perp}^2 - \rho_{\perp \perp}^2}{\Lambda_{\perp \parallel}^2} \; . \end{split}$$

The violation of any of these relations will be a smoking-gun signal of NP.

Constraints on New Physics

But there's more! Suppose that a signal for new physics is found. This implies $b_{\lambda} \neq 0$. Now there are 13 theoretical parameters: 3 a_{λ} 's, 3 b_{λ} 's, 5 strong phase differences, and two weak phases (ϕ and q/p).

However, at best one can measure the magnitudes and relative phases of the 6 decay amplitudes A_{λ} and $\bar{A}_{\lambda} \Longrightarrow$ only 11 independent observables.

11 measurements, 13 unknowns \implies even if there is a signal of NP, can't get any info, right? Not exactly: because equations are nonlinear, can constrain NP parameters.

E.g. if $\Sigma_{\lambda\lambda} \neq 0$,

$$b_{\lambda}^2 \ge \frac{1}{2} \Lambda_{\lambda\lambda} \left[1 - \sqrt{1 - \Sigma_{\lambda\lambda}^2 / \Lambda_{\lambda\lambda}^2} \right].$$

If $\Sigma_{\lambda\lambda}=0$, but $\Lambda_{\perp i}\neq 0$,

$$2(b_i^2 \mp b_{\perp}^2) \ge \Lambda_{ii} \mp \Lambda_{\perp \perp} - \sqrt{(\Lambda_{ii} \mp \Lambda_{\perp \perp})^2 \pm \Lambda_{\perp i}^2} .$$

Also

$$\Lambda_{ii} \cos \eta_i + \Lambda_{\perp \perp} \cos(\eta_{\perp} - 2\eta_i) \le \sqrt{(\Lambda_{ii} + \Lambda_{\perp \perp})^2 - \Lambda_{\perp i}^2}$$

$$\Lambda_{ii} \cos \eta_i - \Lambda_{\perp \perp} \cos \eta_{\perp} \le \sqrt{(\Lambda_{ii} - \Lambda_{\perp \perp})^2 + \Lambda_{\perp i}^2}$$

where $\eta_{\lambda} \equiv 2\left(\frac{q}{p}\frac{meas}{\lambda} - \frac{q}{p}^{mix}\right)$. If $\Lambda_{\perp i} \neq 0$, one cannot have $\eta_i = \eta_{\perp} = 0 \Longrightarrow$ obtain a lower bound on the difference between the measured value and the true value of the phase of $B^0 - \bar{B}^0$ mixing.

In progress: full numerical analysis for the case where $\Sigma_{\lambda\lambda} \neq 0$.

Conclusion

 $B \to V_1 V_2$ decays contain an enormous amount of information, especially if an angular analysis can be performed. One class of measurements which is very useful is triple-product correlations: $\bar{\varepsilon}_1^{*T} \times \bar{\varepsilon}_2^{*T} \cdot \hat{p}$. (Note: the full angular analysis is not necessary to obtain TP's.)

TP's are T-odd; a true CP-violating signal can be obtained by adding the TP's found in $B \to V_1 V_2$ and $\bar{B} \to \bar{V}_1 \bar{V}_2$. Neither tagging nor time dependence is necessary to measure TP's – can in principle combine measurements of charged and neutral B decays. TP's are complementary to direct CP asymmetries – they don't vanish if strong phases are zero.

In SM, all TP's involving light vector mesons are either expected to vanish or be very small \Longrightarrow excellent place to search for physics beyond the SM! TP's which vanish in the SM can be huge (15–20%) in the presence of new physics.

If a full time-dependent angular analysis can be performed, there are many more signals of new physics. Should a signal for new physics be found, one can place a lower limit on the size of the new-physics parameters, as well as on their effect on the measurement of the phase of $B^0-\bar{B}^0$ mixing.