- CP Violation in Kaon Systems in the Standard Model
- CP Violation in Kaon Systems Beyond the SM
- Why rare decays
- Which rare decays
- Conclusions

Consequences of a Symmetry

$$
[\mathrm{S}, \mathrm{H}]=0 \rightarrow \quad|\mathrm{E}, \mathrm{p}, \mathrm{~s}\rangle
$$

We may find states which are simultaneously eigenstates of S and of the Energy

$$
\left|\mathrm{K}_{\mathrm{S}, \mathrm{~L}}{ }^{0}\right\rangle=\alpha\left|\mathrm{K}_{1}{ }^{0}\right\rangle+\beta\left|\mathrm{K}_{2}{ }^{0}\right\rangle
$$

if CP is conserved either $\alpha=0$ or $\beta=0$

¢× Violation in the Neutral Kaon System

Expanding in several "small"

 quantities$$
\begin{aligned}
& \eta^{00}=\frac{\left\langle\pi^{0} \pi^{0}\right| \boldsymbol{H}_{\mathbf{W}}\left|\mathrm{K}_{\mathbf{L}}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \boldsymbol{H}_{\mathbf{W}}\left|\mathrm{K}_{\mathbf{S}}\right\rangle} \sim \varepsilon-2 \varepsilon^{\prime} \\
& \eta^{+-}=\frac{\left\langle\pi^{+} \pi^{-}\right| H_{\mathbf{W}}\left|\mathrm{K}_{\mathbf{L}}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \boldsymbol{H}_{\mathbf{W}}\left|\mathrm{K}_{\mathbf{S}}\right\rangle} \sim \varepsilon+\varepsilon^{\prime}
\end{aligned}
$$

Conventionally:

$$
\begin{aligned}
& \left|\mathrm{K}_{\mathrm{S}}\right\rangle^{\prime}\left|\mathrm{K}_{1}\right\rangle_{\mathbf{C P}=+1}+\varepsilon\left|\mathrm{K}_{2}\right\rangle_{\mathbf{C P}=-1} \\
& \left|\mathrm{~K}_{\mathrm{L}}\right\rangle^{\prime}=\left|\mathrm{K}_{2}\right\rangle_{\mathbf{C P}=-1}+\varepsilon\left|\mathrm{K}_{1}\right\rangle_{\mathbf{C P}=+1}
\end{aligned}
$$

Indirect CP violation: mixing

$$
\left|\mathrm{K}_{\mathbf{L}}\right\rangle=\mid \mathrm{K}_{\mathbf{2}}{ }^{\rangle} \mathbf{C P}=-1 \quad \mathrm{CP}=+1
$$

Box diagrams:
They are also responsible
for B^{0} - B^{0} mixing
$\Delta \mathrm{m}_{\mathrm{d}, \mathrm{s}}$
Complex $\Delta S=2$ effective coupling

e

$\varepsilon \mid \sim \mathrm{C}_{\varepsilon} \mathrm{A}^{2} \lambda^{6} \sigma \sin \delta$

 $\left\{\mathrm{B}_{\mathrm{K}}\left(\mathrm{x}_{\mathrm{c}}, \mathrm{x}_{\mathrm{t}}\right)+\mathrm{F}\left(\mathrm{x}_{\mathrm{t}}\right)\left[\mathrm{A}^{2} \lambda^{4}(1-\sigma \cos \delta)\right]-\mathrm{F}\left(\mathrm{x}_{\mathrm{c}}\right)\right\}$Inami-Lin
$\eta=\sigma \sin \delta \quad \rho=\sigma \cos \delta$
$\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2} \mathrm{M}_{\mathrm{K}} \mathrm{f}^{2}{ }_{\mathrm{K}}$
$\mathrm{C}_{\varepsilon}=\frac{{ }_{\mathrm{F}}{ }^{2} \pi^{2} \Delta \mathrm{M}_{\mathrm{K}}}{6}$
$\left\langle\overline{\mathrm{K}}^{0}\right|\left(\overline{\mathrm{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}\right)^{2}\left|\mathrm{~K}^{0}\right\rangle=8 / 3 \mathrm{f}_{\mathrm{K}}^{2} \mathrm{M}_{\mathrm{K}}^{2} \mathrm{~B}_{\mathrm{K}}$

$$
\begin{gathered}
\left\langle\overline{\mathrm{K}}^{0}\right|\left({\overline{\mathrm{s}_{\mathrm{L}}}}^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left|\mathrm{K}^{0}\right\rangle= \\
8 / 3 \mathrm{f}^{2}{ }_{\mathrm{K}} \mathrm{M}^{2}{ }_{\mathrm{K}} \mathrm{~B}_{\mathrm{K}}(\mu)
\end{gathered}
$$

NEW RESULTS FOR B_{k}

$B^{\mathrm{NDR}_{\mathbf{K}}}(2 \mathrm{GeV}) \quad \widehat{\mathrm{B}}_{\mathbf{K}}$
World Average by L.Lellouch at Lattice 2000 and GM 2001

$$
0.63 \pm 0.04 \pm 0.10 \quad 0.86 \pm 0.06 \pm 0.14
$$

CP-PACS perturbative renorm.
0.575 ± 0.006
0.787 ± 0.008
(quenched) DWF
$0.5746(61)(191)$
RBC non-perturbative renorm.
0.538 ± 0.008
0.737 ± 0.011 (quenched) DWF

Lattice 2002 preliminary
$\mathbf{S P Q}_{\text {cd }} \mathbf{R} \quad 0.66 \pm 0.07 \quad 0.90 \pm 0.10$
Wilson Improved NP renorm.
NNC-HYP Overlap Fermions
0.66 ± 0.04
0.90 ± 0.06
perturbative
Garron \& al. Overlap Fermions $\quad 0.61 \pm 0.07 \quad 0.83 \pm 0.10$
Non-perturbative

Lellouch summer '2002

```
K-}\overline{K}\mathrm{ -mixing: summary (2)
```


Final number

$$
B_{K}^{N D R}(2 \mathrm{GeV})=0.628(42)(99) \longrightarrow \hat{B}_{K}^{N L O}=0.86(6)(14)
$$

with $\hat{B}_{K}^{N L O}$ two-loop RGI B-parameter

6 Same result as in LL, Lattice 2000
6 Clarify situation regarding DW results
© Need unquenched studies to reduce the 15% quenching error in order to maintain impact of indirect CPV in the kaon system on UT (talk by Parodi)

$B^{0}-B^{0}$ mixing

$$
\begin{gathered}
\propto\left(\overline{\mathbf{d}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathbf{b}\right)^{2} \quad \begin{array}{l}
\text { Hadronic matrix } \\
\text { element }
\end{array} \\
\Delta \mathrm{m}_{\mathrm{d}, \mathrm{~s}}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2}}{16 \pi^{2}} \mathrm{~A}^{2} \lambda^{6} \mathrm{~F}_{\mathrm{tt}}\left(\frac{\mathrm{~m}_{\mathrm{t}}^{2}}{\mathrm{M}_{\mathrm{w}}^{2}}\right)<O>
\end{gathered}
$$

Unitarity Triangle

$$
\begin{gathered}
V_{u d}^{*} V_{u b}+V_{c d}^{*} V_{c b}+V_{t d}^{*} V_{t b}=0 \\
\overline{A C}=\frac{1-\lambda^{2} / 2}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| \quad \overline{A B}=\frac{1}{\lambda}\left|\frac{V_{t d}}{V_{c b}}\right|
\end{gathered}
$$

Measurement	$V_{C K M} \times$ other	Constraint
$b \rightarrow u / b \rightarrow c$	$\left\|V_{u b} / V_{c b}\right\|^{2}$	$\bar{\rho}^{2}+\bar{\eta}^{2}$
Δm_{d}	$\left\|V_{t d}\right\|^{2} f_{B_{d}}^{2} B_{B_{d}} f\left(m_{t}\right)$	$(1-\bar{\rho})^{2}+\bar{\eta}^{2}$
$\frac{\Delta m_{d}}{\Delta m_{s}}$	$\left\|\frac{V_{t d}}{V_{t s}}\right\|^{2} \frac{f_{B_{d}}^{2} B_{B_{d}}}{f_{B_{s}}^{2} B_{B_{s}}}$	$(1-\bar{\rho})^{2}+\bar{\eta}^{2}$
ϵ_{K}	$f\left(A, \bar{\eta}, \bar{\rho}, B_{K}\right)$	$\propto \bar{\eta}(1-\bar{\rho})$

$\bar{\rho}(\bar{\eta})=\rho(\eta)\left(1-\lambda^{2} / 2\right)$
$\sin 2 \beta$ is measured directly from $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ decays at Babar \& Belle

$$
A_{J / \psi K_{s}}=\frac{\Gamma\left(B_{d}{ }^{0} \rightarrow J / \psi K_{s}, t\right)-\Gamma\left(\bar{B}_{d}^{0} \rightarrow J / \psi K_{s}, t\right)}{\Gamma\left(B_{d}{ }^{0} \rightarrow J / \psi K_{s}, t\right)+\Gamma\left(\bar{B}_{d}{ }^{0} \rightarrow J / \psi K_{s}, t\right)}
$$

$$
\mathrm{A}_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}}=\sin 2 \beta \quad \sin \left(\Delta \mathrm{~m}_{\mathrm{d}} \mathrm{t}\right)
$$

from the study: CKM Triangle Analysis

A critical review with updated experimental inputs and theoretical parameters
 M. Ciuchini et al . 2000 (\& 2001)

upgraded for ICHEP 2002-presented by A. Stocchi see also the CERN Yellow Book (CKM Workshop)

Results for ρ and $\eta \quad \&$ related quantities

Allowed regions in the $\rho-\eta$ plane (contours at 68% and 95% C.L.)

$$
\begin{aligned}
\rho= & 0.178 \pm 0.046 \\
& {[0.085-0.265] }
\end{aligned}
$$

$\eta=0.341 \pm 0.028$
[0.288-0.397]
at 95\% C.L.
$\sin 2 \alpha=-0.19 \pm 0.25$
$[-0.62-+0.33]$
$\sin 2 \beta=0.695 \pm 0.056$
[0.68-0.79]

Comparison of $\sin 2 \beta$ from direct measurements (Aleph, Opal, Babar, Belle and CDF) and UTA analysis
$\sin 2 \beta_{\text {measured }}=0.734 \pm 0.054 \quad[0.68-0.79] 95 \%$ C.L.
$\sin 2 \beta_{\mathrm{UTA}}=0.695 \pm 0.056[0.54-0.79] 95 \%$ C.L.
Very good agreement no much room for physics beyond the SM !!

Grand average $0.705+0.042-0.032$

CKM YELLOW BOOK

Rfit Method

Parameter	$\leq 5 \% \mathrm{CL}$	$\leq 1 \% \mathrm{CL}$	$\leq 0.1 \% \mathrm{CL}$
$\bar{\rho}$	$0.015-0.334$	$-0.016-0.355$	$-0.049-0.377$
$\bar{\eta}$	$0.274-0.448$	$0.262-0.465$	$0.250-0.484$
$\sin 2 \beta$	$0.647-0.813$	$0.616-0.836$	$0.581-0.860$
γ°	$41.3-87.7$	$38.9-92.0$	$36.8-97.1$

Bayesian Method

Bayesian Method			
Parameter	$5 \% \mathrm{CL}$	$1 \% \mathrm{CL}$	$0.1 \% \mathrm{CL}$
$\bar{\rho}$	$0.079-0.262$	$0.047-0.294$	$0.005-0.336$
$\bar{\eta}$	$0.303-0.408$	$0.287-0.425$	$0.268-0.444$
$\sin 2 \beta$	$0.658-0.787$	$0.658-0.806$	$0.609-0.826$
γ°	$50.5-78.5$	$45.9-83.2$	$40.4-89.4$

Fig. 5.15: Comparison Bbyesian/RFit Methods Allowed regions for $\bar{\rho}$ and $\bar{\eta}$ as 95% (left pot) and 99% (right plot) using the measwermerts of $\left|V_{u b}\right| /\left|V_{\text {ca }}\right|, \Delta M_{\text {d }}$ the anplitude spectrum for including the information from the $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations, $\left|\varepsilon_{K}\right|$ and the meastrentent of $\sin 2 \beta$.

Parameter	$5 \% \mathrm{CL}$	$1 \% \mathrm{CL}$	$0.1 \% \mathrm{CL}$
$\bar{\rho}$	1.30	1.17	1.03
$\bar{\eta}$	1.03	0.96	0.90
$\sin 2 \beta$	1.20	1.21	1.21
7°	1.34	1.22	1.15

Table 5.4: Compartsm Rutio far confidence levels Rfithayesian usiag the Hstributions as obtuched from Rfir so accosou for the information on input quantities

$\Delta \mathrm{m}_{\mathrm{s}}$ Probability Density

Without the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$
$\Delta \mathrm{m}_{\mathrm{s}}=\left(17.8_{-3.2}^{+3.4}\right) \mathrm{ps}^{-1}$
[9.4-24.4] ps^{-1} at 95% C.L.
$\Delta \mathrm{m}_{\mathrm{s}}=(17.8 \pm 3.4) \mathrm{ps}^{-1}$
With the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$
$\Delta \mathrm{m}_{\mathrm{s}}=\left(17.6_{-1.3}^{+2.0}\right) \mathrm{ps}^{-1}$
[15.2 - 20.9] ps^{-1} at 95% C.L.
$\Delta \mathrm{m}_{\mathrm{s}}=\left(17.3_{-0.7}^{+1.5}\right) \mathrm{ps}^{-1}$
\square The angle γ

$$
\begin{aligned}
& \gamma=\left(59.5^{+6.5}-5\right)^{0} \\
& {[49-72]^{0} \text { at } 95 \% \text { C.L. }}
\end{aligned}
$$

With (red) and without (blue) the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$

$\Delta \mathrm{m}_{\mathrm{s}}$ fundamental for constraining γ

Hadronic parameters

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Bd}} \sqrt{ } \mathrm{~B}_{\mathrm{Bd}}=232 \pm 30_{(-20)}^{(+0)} \mathrm{MeV} \text { gm } \\
& \mathrm{f}_{\mathrm{Bd}} \sqrt{ } \sqrt{ } \mathrm{~B}_{\mathrm{Bd}}=235 \pm 33_{(-24)}^{(+0)} \mathrm{MeV}
\end{aligned}
$$

lellouch

$$
\mathrm{f}_{\mathrm{Bd}}{\sqrt{ } \mathrm{~B}_{\mathrm{Bd}}=228_{(-11)}^{(+14)} \mathrm{MeV}_{\text {UTA }}}
$$

$$
\mathrm{B}_{\mathbf{K}}=0.86 \pm 0.06 \pm 0.14
$$

lellouch \&gm rather conservative

$$
\begin{equation*}
\mathrm{B}_{\mathbf{K}}=0.78_{(-0.08)}^{(+0.14)} \tag{UTA}
\end{equation*}
$$

Hadronic parameters

95\% C.L.
UTA

Direct CP violation: decay

$$
\mathrm{CP}=+1
$$

$$
\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\mid \mathrm{K}_{2}{ }^{\rangle}{ }^{\prime} \mathbf{C P}=-1
$$

$$
D P_{i}\left(q_{3}, q_{2}, q_{1} ; B, M_{1}, M_{2}\right)
$$

Complex $\Delta \mathrm{S}=1$ effective coupling

$\mathrm{A}_{\mathbf{0}} \mathrm{e}^{\mathbf{i} \delta_{\mathbf{0}}}=\left\langle(\pi \pi)_{\mathrm{I}=\mathbf{0}} \mathrm{IH}_{\mathbf{w}} \mathrm{I} \mathrm{K}^{\mathbf{0}}\right\rangle$
$\mathrm{A}_{2} \mathrm{e}^{\mathbf{i} \delta_{2}}=\left\langle(\pi \pi)_{\mathrm{I}=2} \mathrm{IH}_{\mathrm{w}} \mathrm{I} \mathrm{K}^{\mathbf{0}}\right\rangle$ Where $\delta_{0,2}$ is the strong interaction phase (Watson theorem) and the weak phase is hidden in $A_{0,2}$
$C P$ if $\operatorname{Im}\left[A_{0}{ }^{*} A_{2}\right] \neq 0$

$$
\varepsilon^{\prime}=\frac{\mathrm{i} \mathrm{e}^{\mathrm{i}\left(\delta_{2}-\delta_{0}\right)} \omega}{\sqrt{ } 2}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
$$

$$
\omega=\operatorname{Re} A_{2} / \operatorname{Re} A_{0} \sim 1 / 22
$$

In the Standard Model

$$
\lambda_{\mathbf{t}}=\mathrm{V}_{\mathbf{t d}} \mathrm{V}_{\mathbf{t s}}^{*} \quad \mathrm{r}=\mathrm{G}_{\mathrm{F}} \omega /\left(2|\varepsilon| \operatorname{Re} \mathrm{A}_{0}\right)
$$

Extracting the phases:

$$
\varepsilon^{\prime} / \varepsilon=\operatorname{Im} \lambda_{t} \mathrm{e}^{\mathrm{i}\left(\pi / 2+\delta_{2}-\delta_{0}-\phi_{\varepsilon}\right)} \mathrm{r}\left[\left|\mathrm{~A}_{0}\right|-\frac{1}{\omega}\left|\mathrm{~A}_{2}\right|\right]
$$

GENERAL FRAMEWORK

$$
\begin{aligned}
& \mathrm{H}^{\Delta \mathrm{S}=\mathbf{1}}=\mathrm{G}_{\mathbf{F}} / \sqrt{ } 2 \mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{us}}^{*}\left[(1-\tau) \Sigma_{\mathrm{i}=\mathbf{1 , 2}} \mathrm{z}_{\mathbf{i}}\left(\mathrm{Q}_{\mathbf{i}}-\mathrm{Q}_{\mathrm{i}}^{\mathbf{c}}\right)+\right. \\
& \left.\quad \tau \Sigma_{\mathbf{i}=\mathbf{1 , 1 0}}\left(\mathrm{z}_{\mathbf{i}}+\mathrm{y}_{\mathbf{i}}\right) \mathrm{Q}_{\mathbf{i}}\right]
\end{aligned}
$$

Where y_{i} and z_{i} are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al. + Ciuchini et al.)

$$
\tau=-\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}
$$

We have to compute $\mathrm{A}^{\mathrm{I}=\mathbf{0 , 2}}=\left\langle(\pi \pi)_{\mathrm{I}=\mathbf{0}, \mathbf{2}} \mathrm{IQ}_{\mathrm{i}} \mathrm{IK}\right\rangle$ with a non perturbative technique (lattice,
QCD sum rules, $1 / \mathrm{N}$ expansion etc.)

New local four-fermion operators are generated

$\mathrm{Q}_{1}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)$
 Current-Current
 $\mathrm{Q}_{2}=\left(\overline{\mathrm{S}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{u}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{u}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)$

$\mathrm{Q}_{3,5}=\left(\overline{\underline{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}}\right) \quad$ Gluon
$\mathrm{Q}_{4,6}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \sum_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{L}, \mathrm{R}}{ }^{\mathrm{A}}\right) \quad$ Penguins
$\mathrm{Q}_{7,9}=3 / 2\left({\overline{S_{\underline{R}}}}^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}^{\mathrm{A}}\right) \sum_{q} \mathrm{e}_{\mathrm{q}}\left(\overline{\mathrm{q}}_{\underline{R}, \mathrm{~L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}}\right)$ Electroweak $\mathrm{Q}_{8,10}=3 / 2\left(\overline{\mathrm{~s}}_{\mathrm{R}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \sum_{q} \mathrm{e}_{\mathrm{q}}\left(\mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{q}_{\mathrm{R}, \mathrm{L}}{ }^{\mathrm{A}}\right)$ Penguins

+ Chromomagnetic end electromagnetic operators to be discussed in the following

$\mathrm{A}_{\mathbf{0}}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{IK}\right\rangle_{\mathrm{I}=\mathbf{0}}\left(1-\Omega_{\mathrm{IB}}\right)$

$\mu=$ renormalization scale

ISOSPIN

 BREAKING μ-dependence cancels if operator matrix elements are consistently computed$$
\mathrm{A}_{\mathbf{2}}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{IK}\right\rangle_{\mathrm{I}=\mathbf{2}}
$$

$\Omega_{\mathrm{IB}}=0.25 \pm 0.08$ (Munich from Buras \& Gerard) 0.25 ± 0.15 (Rome Group) 0.16 ± 0.03 (Ecker et al.)
0.10 ± 0.20 Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.

100 GeV

Large mass scale: heavy degrees of freedom (m_{+}, M_{w}, M_{s}) are removed and their effect included in the Wilson coefficients
renormalizazion scale μ (inverse lattice spacing $1 / a$); this is the scale where the quark theory is matched to the effective hadronic theory

Scale of the low energy process $\Lambda \sim M_{W}$

THE SCALE PROBLEM: Effective theories prefer low scales, Perturbation Theory prefers large scales
if the scale μ is too low problems from higher dimensional operators
(Cirigliano, Donoghue, Golowich)

- it is illusory to think that the problem is solved by using dimensional regularization
on the lattice this problem is called
DISCRETIZATION ERRORS
(reduced by using improved actions and/or scales $\mu>2-4 \mathrm{GeV}$

VACUUM SATURATION \& B-PARAMETERS

$$
\mathrm{A}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}(\mu)\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{I} \mathrm{~K}\right\rangle
$$

$\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}}(\mu) \mathrm{I} \mathrm{K}\right\rangle=\left\langle(\pi \pi) \mathrm{IQ}_{\mathrm{i}} \mathrm{I} \mathrm{K}\right\rangle_{\mathrm{VIA}} \mathrm{B}(\mu)$
μ-dependence of VIA matrix elements is not consistent With that of the Wilson coefficients
e.g. $\left\langle(\pi \pi) \mathrm{IQ}_{9} \mathrm{I} \mathrm{K}\right\rangle_{\mathrm{I}=2, \mathrm{VIA}}=2 / 3 \mathrm{f}_{\pi}\left(\mathrm{M}_{\mathrm{K}}^{2}-\mathrm{M}_{\pi}^{2}\right)$

In order to explain the $\Delta \mathrm{I}=1 / 2$ enhancement the B-parameters of
Q_{1} and Q_{2} should be of order 4 !!!

Relative contribution of the OPS

\square Positive
\square Negative
\square Total

The Buras Formula that should NOT be

 used but is presented by everyone$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)_{)_{\mathrm{EXP}}}=(17.2 \pm 1.8) 10^{-4} \\
& \lambda_{\mathrm{t}}=\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{ts}}{ }^{*}=(1.31 \pm 1.0) 10^{-4} \\
& \varepsilon^{\prime} / \varepsilon=13 \operatorname{Im} \lambda_{\mathrm{t}}[110 \mathrm{MeV}]^{2}\left[\mathrm{~B}_{6}\left(1-\Omega_{\mathrm{IB}}\right)-0.4 \mathrm{~B}_{8}\right] \\
& \mathrm{m}_{\mathrm{s}}(\mu) \\
& \text { a value of } \mathrm{B}_{6} \text { MUCH LARGER than } 1 \\
& (2 \div 3) \text { is needed to explain the experiments }
\end{aligned}
$$

The situation worsen if also B_{8} is larger than 1

Theoretical Methods for the Matrix Elements (ME)

- Lattice QCD Rome Group, m. Ciuchini \& al.

- NLO Accuracy and consistent matching
- $\quad \chi \mathrm{PT}$ (now at the next to leading order) and quenching
- no realistic calculation of $\left\langle\mathrm{Q}_{6}\right\rangle$
- Fenomenological Approach Munich A.Buras \& al.
- NLO Accuracy and consistent matching
- no results for $\left.<\mathrm{Q}_{6,8}\right\rangle$ which are taken elsewhere
- Chiral quark model Trieste s.Bertolini \& al.
- all ME computed with the same method
- model dependence, quadratic divergencies,matching

Figure 3: Recent theoretical calculations of $\varepsilon^{\prime} / \varepsilon$ are compared with the combined 1- σ average of the NA31, E731, KTeV and NA48 results $\left(\varepsilon^{\prime} / \varepsilon=\right.$ $\left.17.2 \pm 1.8 \times 10^{-4}\right)$, depicted by the \square horizontal band.

In my opinion only the Lattice approach will be able to give quantitative answers with controlled systematic errors

The IR problem arises from two sources:

- The (unavoidable) continuation of the theory to

Euclidean space-time (Maiani-Testa theorem)

- The use of a finite volume in numerical simulations

An important step towards the solution of the IR problem has been achieved by L. Lellouch and M. Lüscher (LL), who derived a relation between
the $K \rightarrow \pi \pi$ matrix elements in a finite volume and the physical amplitudes
presented by L. Lellouch at Latt2000

Commun.Math.Phys.219:31-44,2001 e-Print Archive: hep-lat/0003023

Here I discuss an alternative derivation based on the behaviour of correlators of local operator when $\mathrm{V} \rightarrow \infty$ D. Lin, G.M., C. Sachrajda and M. Testa hep-lat/0104006 (LMST) values of the Physical Amplitudes $\quad|\langle\pi \pi \mathrm{E}| \mathrm{Q}(0)| \mathrm{K}\rangle \mid$ by comparing, at large values of V , finite volume correlators to the infinite volume ones
$|\langle\pi \pi \mathrm{E}| \mathrm{Q}(0)| \mathrm{K}\rangle \mid=\sqrt{\mathrm{F}}\langle\pi \pi \mathrm{n}| \mathrm{Q}(0)|\mathrm{K}\rangle_{\mathrm{v}}$
$F=32 \pi^{2} V^{2} \rho_{V}(E) E m_{K} / k(E)$ where $k(E)=\sqrt{ } E^{2} / 4-m_{\pi}^{2}$ and
$\rho_{\mathrm{V}}(\mathrm{E})=\left(\mathrm{q} \phi^{\prime}(\mathrm{q})+\mathrm{k} \delta^{\prime}(\mathrm{k})\right) / 4 \pi \mathrm{k}^{2}$ is the expression which one would heuristically derive by interpreting $\rho_{\mathrm{V}}(\mathrm{E})$ as the density of states in a finite volume (D. Lin, G.M., C. Sachrajda and M. Testa)
the corrections are exponentially small in the volume
On the other hand the phase-shift can be extracted from the two-pion energy according to (Lüscher):

$$
\mathrm{W}_{\mathrm{n}}=2 \sqrt{\mathrm{~m}_{\pi}^{2}+\mathrm{k}^{2} \quad \mathrm{n} \pi-\delta(\mathrm{k})=\phi(\mathrm{q}), ~}
$$

THE CHIRAL BEHAVIOUR OF $\left\langle\pi \pi \mathrm{IH}_{\mathrm{W}} \mathrm{I} \mathrm{K}\right\rangle_{\mathrm{I}=\mathbf{2}}$ by the $\mathrm{SPQ}_{\mathrm{cd}} \mathrm{R}$ Collaboration and a comparison with JLQCD Phys. Rev. D58 (1998) 054503 no chiral logs included yet, analysis under way

This work $0.0097(10) \mathrm{GeV}^{3}$
—— phys. limit (includ. $O\left(p^{4}\right)$ corr.)
0.000
experimental value

- JLQCD (PT matching)
- $\mathrm{M}_{\mathrm{K}}=\mathrm{M}_{\mathrm{pi}}=\mathrm{M}_{\mathrm{PS}} \quad \mathrm{mom}=0$
$-\mathrm{M}_{\mathrm{K}}=\mathrm{M}_{\mathrm{pi}}=\mathrm{M}_{\mathrm{PS}} \quad \mathrm{mom}=1$
$A_{\text {exp }}=0.0104098 \mathrm{GeV}^{3}$
1.0

Lattice QCD finds $\mathrm{B}_{\mathrm{K}}=0.86$ and a value of $\left\langle\pi \pi \mathrm{IH}_{\mathrm{W}} \mathrm{IK}\right\rangle_{\mathbf{I}=2}$ compatible with exps

I=0 $\pi \pi$ States in the Quenched Theory (Lack of Unitarity)

1) the final state interaction phase is not universal, since it depends on the operator used to create the two-pion state. This is not surprising, since the basis of Watson theorem is unitarity;
2) the Lüscher quantization condition for the two-pion energy levels does not hold. Consequently it is not possible to take the infinite volume limit at constant physics, namely with a fixed value of \mathbf{W};
3) a related consequence is that the LL relation between the absolute value of the physical amplitudes and the finite volume matrix elements is no more valid;
4) whereas it is usually possible to extract the lattice amplitudes by constructing suitable timeindependent ratios of correlation functions, this procedure fails in the quenched theory because the time-dependence of correlation functions corresponding to the same external states is not the same
D. Lin, G.M., E. Pallante, C. Sachrajda and G. Villadoro

$\Delta I=1 / 2$ and $\varepsilon^{\prime} / \varepsilon$

- $\mathrm{K} \rightarrow \pi \pi$ from $\mathrm{K} \rightarrow \pi$ and $\mathrm{K} \rightarrow 0$
- Direct $\mathrm{K} \rightarrow \pi \pi$ calculation
$\Delta \mathrm{I}=1 / 2$ decays \quad and Q_{2})
$\varepsilon^{\prime} / \varepsilon$ electrop \quad as $\left(\mathrm{Q}_{7}\right.$ and $\left.\mathrm{Q}_{8}\right)$
$\varepsilon^{\prime} / \varepsilon$ strong puriguns $\left(\mathrm{Q}_{6}\right)$

Physics Results from RBC and CP-PACS

 no lattice details here| | $\operatorname{Re}\left(\mathrm{A}_{0}\right)$ | $\operatorname{Re}\left(\mathrm{A}_{2}\right)$ | $\begin{aligned} & \operatorname{Re}\left(A_{0}\right) / \varepsilon^{\prime} / \varepsilon \\ & \operatorname{Re}\left(\mathrm{A}_{2}\right) \end{aligned}$ | Total |
| :---: | :---: | :---: | :---: | :---: |
| RBC | $\begin{aligned} & 29 \div 31 \\ & 10^{-8} \end{aligned}$ | $\begin{aligned} & 1.1 \div 1.2 \\ & 10^{-8} \end{aligned}$ | $24: 27$ | Disagrement with |
| $\begin{aligned} & \text { CP } \\ & \text { PACS } \end{aligned}$ | $\begin{aligned} & 16: 21 \\ & 10^{-8} \end{aligned}$ | $\begin{aligned} & 1.3 \div 1.5 \\ & 10^{-8} \end{aligned}$ | $9 \div 12\left(\begin{array}{l} -2 \div-{ }^{-1} \\ 10^{-4} \end{array}\right.$ | experiments ! (and other th. determinations) |
| EXP | $\begin{aligned} & 33.3 \\ & 10^{-8} \end{aligned}$ | 510^{-8} | $\begin{array}{ll} 22.2 & 17.2 \pm \\ & 1.8 . \\ & 10^{-4} \end{array}$ | Opposite sign ! New Physics? |

Physics Results from RBC and CP-PACS

$$
\begin{array}{ll}
\operatorname{Re}\left(\mathrm{A}_{0}\right) \quad \operatorname{Re}\left(\mathrm{A}_{2}\right) & \operatorname{Re}\left(\mathrm{A}_{0}\right) / \varepsilon^{\prime} / \varepsilon \\
& \operatorname{Re}\left(\mathrm{A}_{2}\right)
\end{array}
$$

RBC	$29 \div 31$	$1.1 \div 1.2$	$24 \div 27$	$-4 \div-8$
	10^{-8}	10^{-8}		10^{-4}
CP	$16 \div 21$	$1.3 \div 1.5$	$9 \div 12$	$-2 \div-7$
PACS	10^{-8}	10^{-8}		10^{-4}
EXP	33.3	1.510^{-8}	22.2	$17.2 \pm$
	10^{-8}			1.8
				10^{-4}

- Chirality
- Subtraction
- Low Ren.Scale
- Quenching
- FSI
- New Physics
- A combination?

Even by doubling O_{6} one cannot agree with the data

$\mathrm{K} \rightarrow \pi \pi$ and Staggered Fermions (Poster by W.Lee) will certainly help to clarify the situation I am not allowed to quote any number

beyond the SM (Supersymmetry)

Spin 1/2
Quarks
q_{L}, u_{R}, d_{R}
Leptons
l_{L}, e_{R}
Spin 1 Gauge bosons

$$
W, Z, \gamma, \mathrm{~g}
$$

Spin 0 Higgs bosons
$\mathrm{H}_{1}, \mathrm{H}_{2}$

Spin 0 SQuarks
$\mathrm{Q}_{\mathrm{L}}, \mathrm{U}_{\mathrm{R}}, \mathrm{D}_{\mathrm{R}}$
SLeptons

$$
L_{L}, E_{R}
$$

Spin 1/2 Gauginos

$$
\mathrm{w}, \mathrm{z}, \tilde{\gamma}, \tilde{\mathrm{~g}}
$$

Spin 1/2
Higgsinos
$\tilde{\mathrm{H}}_{1}, \tilde{\mathrm{H}}_{2}$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either

Diagonalize the SMM

or Rotate by the same matrices the SUSY partners of the \mathbf{u} - and d- like quarks

$$
\left(\mathrm{Q}_{\mathrm{L}}^{\mathrm{j}}\right)^{\prime}=\mathbf{U}^{\mathrm{ij}}{ }_{\mathrm{L}} \mathrm{Q}_{\mathrm{L}}^{\mathrm{i}}
$$

In the latter case the Squark Mass Matrix is not diagonal

d)
$\left(\mathrm{m}_{\mathrm{Q}}^{2}\right)_{\mathrm{ij}}=\mathrm{m}_{\text {average }}^{2} 1_{\mathrm{ij}}+\Delta \mathrm{m}_{\mathrm{ij}}{ }^{2} \quad \delta_{\mathrm{ij}}=\Delta \mathrm{m}_{\mathrm{ij}}{ }^{2} /$ m^{2}

New local four-fermion operators are generated

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mathrm{L}} \mathrm{~d}_{\mathrm{L}}^{\mathrm{B}}\right) \quad \mathrm{SM} \\
& \mathrm{Q}_{2}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{R}}^{\mathrm{B}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \\
& \mathrm{Q}_{3}=\left(\overline{\mathrm{s}}_{\mathrm{R}}^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\overline{\mathrm{s}}_{\mathrm{R}}^{\mathrm{B}} \mathrm{~d}_{\mathrm{L}}^{\mathrm{A}}\right) \\
& \mathrm{Q}_{4}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}^{\mathrm{B}} \mathrm{~d}_{\mathrm{R}}{ }^{\mathrm{B}}\right) \\
& \mathrm{Q}_{5}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}^{\mathrm{B}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}^{\mathrm{B}} \mathrm{~d}_{\mathrm{R}}{ }^{\mathrm{A}}\right) \\
& + \text { those obtained by } \mathrm{L} \leftrightarrow \mathrm{R}
\end{aligned}
$$

Similarly for the b quark e.g.
$\left(\bar{b}_{R}{ }^{A} d_{L}{ }^{A}\right)\left(\bar{b}_{R}{ }^{B} d_{L}{ }^{B}\right)$

$$
L_{S M}^{\Delta F=2}=\Sigma_{i j=d, s, b}\left(V_{t d_{i}} V_{t d_{j}}^{*}\right)^{2} C\left[\bar{d}_{i} \gamma_{\mu}\left(1-\gamma_{5}\right) d_{j}\right]^{2}
$$

$\alpha=$ different Lorentz structures $\mathrm{L} \times \mathrm{L}, \mathrm{L} \times \mathrm{R}$ etc. $\mathrm{C}^{\mathrm{ij}}{ }_{\alpha}=$ complex coefficients from perturbation theory
$\langle\overline{\mathrm{K}}| \mathrm{Q}^{\mathrm{ij}}{ }_{\alpha}|\mathrm{K}\rangle$ from lattice QCD (APE Collaboration
Allton et al., Donini et al., Becirevic et al.)

APE \& $\mathrm{SPQ}_{\mathrm{cd}}$ R Collaboration

 (Becirevic et. al.)also

$$
\langle\overline{\mathrm{B}}| \mathrm{Q}^{\mathrm{ij}}{ }_{\alpha}|\mathrm{B}\rangle
$$

In the kaon case matrix elements of
LR operators have a large enhancement as can be guessed by their value in the VSA

$$
\frac{\left\langle\overline{\mathrm{K}}^{0}\right| \mathrm{Q}_{2-5}\left|\mathrm{~K}^{0}\right\rangle}{\left\langle\overline{\mathrm{K}}^{0}\right| \mathrm{Q}_{1}\left|\mathrm{~K}^{0}\right\rangle} \sim\left(\frac{\mathrm{M}^{2}{ }_{\mathrm{K}}}{\left(\mathrm{~m}_{\mathrm{s}}+\mathrm{m}_{\mathrm{d}}\right)}\right)^{2}
$$

This enhancement is confirmed by explicit lattice calculations (APE \& SPQR)
lattice operators are renormalized in a scheme suitable for a consistent NLO calculation of the physical amplitude

Tree level coefficients computed by Gabbiani, Masiero, Gabrielli and Silvestrini,

LO coefficients computed by Bagger, Matchev and Zhang

The
 QCD corrections have large effects !

NLO corrections of $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ to the Wilson coefficients known only in few cases, their effect is expected to be rather small $\alpha_{\mathrm{s}}=\alpha_{\mathrm{s}}\left(\mathrm{M}_{\text {SUSY }}\right)$

NLO coefficients computed by
Ciuchini, Franco, Lubicz, Scimemi, Silvestrini, G.M.; Buras, Misiak, Urban

Phenomenological analyses Gabbiani et al.,
Ciuchini et al. + Masiero; Ali and London; Ali and Lunghi; Buras et al.; Bartl et al. etc. etc.
TYPICAL BOUNDS FROM $\Delta \mathrm{M}_{\mathrm{K}}$ AND ε_{K}

$$
\begin{aligned}
& x=m^{2} \sim m^{2} \tilde{q} \\
& x=1
\end{aligned}
$$

$$
\left|\operatorname{Re}\left(\delta_{12}{ }^{2}\right)_{\mathrm{LL}}\right|<3.9 \times 10^{-2}
$$

$$
\left|\operatorname{Re}\left(\delta_{12}{ }^{2}\right)_{\mathbf{L R}}\right|<2.5 \times 10^{-3}
$$

$\left|\operatorname{Re}\left(\delta_{12}\right)_{\mathrm{LL}}\left(\delta_{12}\right)_{\mathrm{RR}}\right|$
$<8.7 \times 10^{-4}$
from ΔM_{K}
from ε_{K}
$x=1 \quad \mathrm{~m}_{\mathfrak{q}}=500 \mathrm{GeV}$
$\sqrt{\left|\operatorname{Im}\left(\delta_{12}{ }^{2}\right)_{\mathrm{LL}}\right|}<5.8 \times 10^{-3}$
$\sqrt{\left|\operatorname{Im}\left(\delta_{12}{ }^{2}\right)_{\mathrm{LR}}\right|}<3.7 \times 10^{-4}$

$\left|\operatorname{Im}\left(\delta_{12}\right)_{\mathrm{LL}}\left(\delta_{12}\right)_{\mathrm{RR}}\right|<1.3 \times 10^{-4}$
$\Delta \mathrm{M}_{\mathrm{B}} \quad$ and $\quad \mathrm{A}\left(\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}\right)$

$$
\begin{aligned}
& \left.\Delta \mathrm{M}_{\mathrm{B}_{\mathrm{d}}}=2 \mathrm{Abs}\left|\left\langle\overline{\mathrm{~B}}_{\mathrm{d}}\right| H_{\text {eff }}^{\Delta \mathrm{B}=\mathbf{2}}\right| \mathrm{B}_{\mathrm{d}}\right\rangle \mid \\
& \mathrm{A}\left(\mathrm{~B} \rightarrow \mathrm{~J} / \psi K_{\mathrm{s}}\right)=\sin 2 \beta_{\text {eff }} \sin \Delta \mathrm{M}_{\mathrm{B}_{\mathrm{d}}} \mathrm{t} \\
& 2 \beta_{\text {eff }}=\operatorname{Arg}\left|\left\langle\mathrm{B}_{\mathrm{d}} \mid H_{\text {eff }}^{\Delta \mathrm{B}=\boldsymbol{q}} \mathrm{B}_{\mathrm{d}}\right\rangle\right|
\end{aligned}
$$

$\sin 2 \beta=0.79 \pm 0.10 \quad$ from exps BaBar \& Belle \& others

TYPICAL BOUNDS ON THE δ-COUPLINGS

$\left\langle\mathrm{B}^{0}\right| \mathrm{H}_{\mathrm{eff}}{ }^{\mathrm{B}=2}\left|\mathrm{~B}^{0}\right\rangle=\operatorname{Re} \mathrm{A}_{\mathrm{SM}}+\operatorname{Im} \mathrm{A}_{\mathrm{SM}}$ $+A_{\text {SUSY }} \operatorname{Re}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}+\mathrm{i} \mathrm{A}_{\text {SUSY }} \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}$

TYPICAL BOUNDS ON THE $\delta-C O U P L I N G S$

$\left\langle\mathrm{B}^{0}\right| \mathrm{H}_{\mathrm{eff}}{ }^{\Delta \mathrm{B}=2}\left|\mathrm{~B}^{0}\right\rangle=\operatorname{Re} \mathrm{A}_{\mathrm{SM}}+\operatorname{Im} \mathrm{A}_{\mathrm{SM}}$
$+\mathrm{A}_{\text {SUSY }} \operatorname{Re}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}+\mathrm{i} \mathrm{A}_{\text {SUSY }} \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}$
Typical bounds:

$$
\operatorname{Re}, \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}} \leq 1 \div 5 \times 10^{-2}
$$

Note: in this game δ_{SM} is not determined by the UTA
From Kaon mixing: $\operatorname{Re}, \operatorname{Im}\left(\delta_{12}{ }^{d}\right)_{A B} \leq 1 \times 10^{-4}$ SERIOUS CONSTRAINTS ON SUSY MODELS

SUSY Penguins \& the Magnetic and Chromomagnetic operator

W Chromomagnetic operator

SUSY Penguins \& the Magnetic and
b

Recent analyses by G. Kane and collaborators, Murayama and Ciuchini et al.

Also Higgs (h,H,A) contributions

Chromomagnetic operators vs $\varepsilon^{\prime} / \varepsilon$ and ε

$$
\mathrm{H}_{\mathrm{g}}=\mathrm{C}_{\mathrm{g}}^{+} \mathrm{O}_{\mathrm{g}}^{+}+\mathrm{C}_{\mathrm{g}}^{-} \mathrm{O}_{\mathrm{g}}^{-}
$$

$O^{ \pm}{ }_{g}=\underline{g}\left(S_{L} \sigma^{\mu \nu} t^{a} d_{R} G_{\mu \nu}{ }^{a} \pm s_{R} \sigma^{\mu \nu} t^{a} d_{L} G_{\mu \nu}{ }^{a}\right)$

- It contributes also in the Standard Model (but it is chirally supressed $\propto \mathrm{m}_{\mathrm{K}}{ }^{4}$)
- Beyond the SM can give important contributions to ε^{\prime} (Masiero and Murayama)
- It is potentially dangerous for ε (Murayama et. al., D'Ambrosio, Isidori and G.M.)
- It enhances CP violation in $\mathrm{K} \rightarrow \pi \pi \pi$ decays (D'Ambrosio, Isidori and G.M.)
- Its cousin $\mathrm{O}^{ \pm}{ }_{\gamma}$ gives important effects in $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}$
$\left(<\pi^{0}\left|\mathbf{Q}_{\gamma}{ }^{+}\right| K^{0}\right\rangle$ computed by D. Becirevic et al., The $S_{P Q}{ }_{c d} \mathbf{R}$ Collaboration, Phys.Lett. B501 (2001) 98)

The Chromomagnetic operator

mass term necessary to the helicity flip $\mathrm{S}_{\mathbf{L}} \longrightarrow \mathrm{S}_{\mathbf{R}}$

$\langle\pi \pi| \mathrm{O}_{\sigma}|\mathrm{K}\rangle \sim \mathrm{O}\left(\mathrm{M}_{\mathrm{K}}{ }^{4}\right) \quad\left[\langle\pi \pi| \mathrm{H}_{\mathrm{W}}|\mathrm{K}\rangle \sim \mathrm{O}\left(\mathrm{M}_{\mathrm{K}}{ }^{2}\right)\right]$

$>\mathrm{g}$ have large effects in $\varepsilon^{\prime} / \varepsilon$

CP from SUSY flavour mixing

define $\delta_{ \pm}=\delta^{21}{ }_{\mathbf{L R}} \pm\left(\delta^{12}{ }_{\mathbf{L R}}\right)^{*}$ then

parity odd
$\mathrm{K} \longrightarrow \pi \quad$ in $\mathrm{K}^{0}-\mathrm{K}^{0} \quad$ mixing (see next page)

Boxes
 1-mag
 2-mag
 $\mathrm{K}_{\mathrm{L}} \quad \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}$ $\varepsilon^{\prime} / \varepsilon \rightarrow$
 $\operatorname{Im}\left(\delta^{2}\right)$ or $\operatorname{Im}\left(\delta^{2}\right)$ $\operatorname{Im}\left(\delta_{+}\right)$ $\operatorname{Im}\left(\delta^{2}{ }_{+}\right)$ $\operatorname{Im}\left(\delta^{2}{ }_{+}\right)^{2}$ $\operatorname{Im}\left(\delta_{-}\right)$

If the K -factor K_{1} is not too small, the strongest limits on $\operatorname{Im}\left(\delta_{+}\right)$come from $\mathrm{A}_{1 \text { mag }}$ in $\mathrm{K}^{0}-\mathrm{K}^{0}$ mixing $\left(10^{-4}-10^{-5}\right)$!! D'Ambrosio, Isidori and G.M.; X-G He, Murayama, Pakvasa and Valencia

GENERAL FRAMEWORK

$$
\begin{gathered}
\mathrm{H}^{\Delta \mathrm{B}=1}=\mathrm{G}_{\mathrm{F}} / \sqrt{ } 2 \sum_{\mathrm{p}=\mathrm{u}, \mathrm{c}} \mathrm{~V}_{\mathrm{pb}} \mathrm{~V}_{\mathrm{ps}}{ }^{*}\left[\mathrm{C}_{1} \mathrm{Q}_{1}{ }^{\mathrm{p}}+\mathrm{C}_{2} \mathrm{Q}_{2}{ }^{\mathrm{p}}+\right. \\
\left.\sum_{\mathrm{i}=1,10} \mathrm{C}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}+\mathrm{C}_{7 \gamma} \mathrm{Q}_{7 \gamma}+\mathrm{C}_{8 \mathrm{~g}} \mathrm{Q}_{8 \mathrm{~g}}\right]
\end{gathered}
$$

penguin ops

Where the C_{i} are short distance coefficients, the evolution of which is known in perturbation theory at the NLO
(Buras et al. + Ciuchini et al.)
The coefficients of the penguin operators are modified by the SUSY penguins with mass insertions

- Why rare decays
- Which rare decays

WHY RARE DECAYS?

Rare decays are a manifestation of broken (accidental) symmetries e.g. of physics beyond the Standard Model

Proton decay
baryon and lepton number conservation
$\mu \quad->\quad \mathbf{e}+\gamma$
lepton flavor number
$\begin{array}{llll}v_{i} & -> & v_{k}\end{array}$

RARE DECAYS WHICH ARE ALLOWED IN THE STANDARD MODEL

FCNC:

$$
\begin{aligned}
& \text { THUS THEY ARE } \\
& \text { SENSITIVE TO } \\
& \text { NEW PHYSICS }
\end{aligned}
$$

$$
\mathbf{q}_{\mathrm{i}} \rightarrow \mathbf{q}_{\mathrm{k}}+\gamma
$$

these decays occur only via loops because of GIM and are suppressed by CKM

Why we like $K \rightarrow \pi \nu \bar{v}$? For the same reason as $A_{J / \psi K_{s}}$: 1) Dominated by short distance dynamics (hard GIM suppression, calculable in pert. theory) 2) Negligible hadronic uncertainties (matrix element known)
$O\left(\mathrm{G}_{\mathrm{F}}^{2}\right) \mathrm{Z}$ and W penguin/box $s \rightarrow \mathrm{~d} v \bar{v}$ diagrams

SM

Diagrams

$$
\begin{gathered}
\mathrm{H}_{\text {eff }}=\mathrm{G}_{\mathrm{F}}^{2} \alpha /\left(2 \sqrt{ } 2 \pi \mathrm{~s}^{2}{ }_{\mathrm{W}}\right)\left[\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{X}_{\mathrm{t}}+\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cs}}{ }^{*} \mathrm{X}_{\mathrm{c}}\right] \times \\
\left(5 \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}\right)\left(\forall \gamma^{\mu}\left(1-\gamma_{5}\right) v\right)
\end{gathered}
$$

© NLO QCD corrections to $\mathrm{X}_{\mathrm{t}, \mathrm{c}}$ and $O\left(\mathrm{G}_{\mathrm{F}}^{3} \mathrm{~m}_{\mathrm{t}}^{4}\right)$ contributions known
© the hadronic matrix element $\langle\pi| \mathrm{s} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}|\mathrm{K}\rangle$ is known with very high accuracy from Kl 3 decays
© © sensitive to $\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{ts}}^{*}$ and expected large $\not \subset \mathrm{P}$
$A(s \rightarrow d v \bar{v})$
$O\left(\lambda^{5} \mathrm{~m}_{\mathrm{t}}^{2}\right)+\mathrm{i} O\left(\lambda^{5} \mathrm{~m}_{\mathrm{t}}^{2}\right)$

CKM suppressed

$O\left(\lambda \mathrm{~m}_{\mathrm{c}}^{2}\right)+i O\left(\lambda^{5} \mathrm{~m}_{\mathrm{c}}^{2}\right)$
$O\left(\lambda, \lambda^{2}\right.$ ged $)$

GIM

CP conserving: error of $O(10 \%)$ due to NNLO corrections in the charm contribution and CKM uncertainties $\quad B R\left(K^{+}\right)_{S M}=(7.2 \pm 2.0) \times 10^{-11}$

$$
\operatorname{BR}\left(K^{+}\right)_{\text {EXP }}=\left(15.7^{+17.5}-8.2\right) \times 10^{-11}
$$

- 2 events observed by E787
- central value about 2 the value of the SM
- E949 10-20 events in 2 years

CP Violating $K_{L} \rightarrow \pi^{0} \vee \nabla$

$O\left(\lambda^{5} m^{2}\right)+i O\left(\lambda m_{t}^{2}\right)$
$O\left(\lambda \mathrm{~m}_{\mathrm{c}}{ }^{2}\right)+i O\left(\lambda \mathrm{~s}^{2}\right)$
dominated by the top quark contribution
-> short distances
(or new physics)
theoretical error ~2 \%
$\mathrm{BR}\left(\mathrm{K}^{+}\right)_{S M}=4.30 \times 10^{-10}\left(m_{+}\left(m_{+}\right) / 170 \mathrm{GeV}\right)^{2.3} \times$
$\left(\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right) / \lambda^{5}\right)^{2}=(2.8 \pm 1.0) \times 10^{-11}$
Using $\Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)<\Gamma\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)$
One gets $\mathrm{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)<1.8 \times 10^{-9}(90 \%$ C.L. $)$
2 order of magnitude larger than the SM expectations

Improvements for $K_{L} \rightarrow \pi^{0} v \bar{v}$
 KEK E931 ~ 10^{-9} KOPIO 10^{-13} (50 events)

Other interesting decays

(but with long important long distance effects):

$$
\mathrm{K}^{+} \rightarrow \pi^{+} \mathrm{l}^{+} \mathrm{l}^{-}\left(\mathrm{K}_{\mathrm{S}} \rightarrow \pi^{0} \mathrm{l}^{+} \mathrm{l}^{-}\right)
$$

[^0]
LONG DISTANCES DOMINATE

$K_{L} \rightarrow \mu^{+} \mu^{-}$

BNL E871
$\mathrm{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}\right)=(7.18 \pm 0.17) \times 10^{-9}$
Almost saturated by the absorptive 2 photon contribution $\mathrm{BR}_{\mathrm{abs}}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}\right)=(7.07 \pm 0.18) \times 10^{-9}$

LONG AND SHORT DISTANCES COMPARABLE

Still a long way to go but worth to be continued and improved

Any measurement above the SM should satisfy other exp constraints

Conclusions and Outlook

1) Since their discovery in 1947

KAONS HAVE BEEN THE PROTAGONIST OF EXTRAORDINARY EXPERIMENTAL (UNEXPECTED) DISCOVERIES AND THEORETICAL PROGRESSES IN OUR UNDERSTANDING OF FUNDAMENTAL INTERACTIONS AND COSTITUENTS
(strangeness, $\theta-\tau$ puzzle, CP violation, GIM to mention only the main ones)
2) KAON PHYSICS CONTINUE TO BE A FUNDAMENTAL TESTING GROUND FOR WEAK INTERACTIONS, FLAVOUR PHYSICS AND CP VIOLATION
3) KAON DECAYS MAY ALSO BE (HOPEFULLY) ONE OF THE LOW ENERGY WINDOWS FOR THE PHYSICS BEYOND THE STANDARD MODEL

[^0]: π

