Kaon Physics: Experimental Status and Perspectives

Marco S. Sozzi

CERN and Scuola Normale Superiore, Pisa

FPCP 2003, Paris – June 5th 2003

June 5th, 2003

M. Sozzi - Kaon physics

Outline

- Re(ε'/ε): the quest for direct CP violation
- Rare K_L decays and CP violation
- Rare K_S decays and CP violation
- T-odd correlations: beyond the SM
- Loop-induced decays and unitarity triangle
- Future projects
- Conclusions ?

Still kaons?

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

- The "minimal" flavourlaboratory
- An amazing interferometric system
- Long lifetime, few decay modes, large mixing
- Both mass and flavour eigenstates accessible
- All kinds of CP violation present
- Difficulties in linking measurements to theory (not always!)

CP VIOLATION OBSERVED

charge asymmetry in $K^0_{\ell 3}$ decays		
δ_L = weighted average of $\delta_L(\mu)$ and $\delta_L(e)$		$(0.327 \pm 0.012)\%$
$\delta_L(\mu) = [\Gamma(\pi^- \mu^+ \nu_{\mu}) - \Gamma(\pi^+ \mu^- \overline{\nu}_{\mu})]/\text{sum}$		$(0.304 \pm 0.025)\%$
$\delta_{L}(e) = \left[\Gamma(\pi^{-}e^{+}\nu_{e}) - \Gamma(\pi^{+}e^{-}\overline{\nu}_{e})\right]/\text{sum}$		$(0.333 \pm 0.014)\%$
parameters for $K_I^0 \rightarrow 2\pi$ decay		
$ \eta_{00} = A(K_L^0 \to 2\pi^0) /$		$(2.274 \pm 0.017) \times 10^{-3}$
$A(K_S^0 \rightarrow 2\pi^0)$		
$ \eta_{+-} = A(K_L^0 \rightarrow \pi^+\pi^-) / A(K_S^0 \rightarrow$		$(2.286 \pm 0.017) \times 10^{-3}$
$\pi^{+}\pi^{-})$		
$Re(e'/e) = (1 - \eta_{00}/\eta_{+-})/3$	[e]	$(1.8 \pm 0.4) \times 10^{-3} (5 = 2.3)$
First ϕ_{+-} or ϕ_{00} assumes CPT, second does not.		
ϕ_{+} , phase of η_{+}		$(43.51 \pm 0.06)^{\circ}$
ϕ_{+-} , phase of η_{+-}		(43.4 ± 0.7) [◊]
ϕ_{00} , phase of η_{00}		(43.51 ± 0.06) [◊]
ϕ_{00} , phase of η_{00}		(43.2 ± 1.0) [◊]
CP asymmetry A in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$		$(13.6 \pm 2.8)\%$
β_{CP} from $K_L \rightarrow e^+e^-e^+e^-$		-0.23 ± 0.09
γ_{CP} from $K_L^0 \rightarrow e^+e^-e^+e^-$		-0.09 ± 0.09
parameters for $K_L^0 \rightarrow \pi^+ \pi^- \gamma$ decay		
$ \eta_{+-\gamma} = A(K_L^0 \rightarrow \pi^+ \pi^- \gamma, CP) $		$(2.35 \pm 0.07) \times 10^{-3}$
violating)/A($K_S^0 \rightarrow \pi^+ \pi^- \gamma$)		
$\phi_{+} = \gamma$ = phase of $\eta_{+} = \gamma$		$(44 \pm 4)^{\circ}$
$\Gamma(K_L^0 \rightarrow \pi^+ \pi^-)/\Gamma_{total}$		$(2.084 \pm 0.032) \times 10^{-3} \{S = 1.1\}$
$\Gamma(K_L^0 \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$		$(9.42\pm0.19)\times10^{-4}~(S=1.1)$
Parameters for $B^0 \rightarrow J/\psi K^0_S$		

 $sin(2\beta)$

 $0.79 \pm 0.14 (S = 1.3)$

M. Sozzi - Kaon physics

The Quest for Direct CP Violation

E832 (KTeV) at FNAL

Double K_L beams (=70 GeV/c) Regenerator for K_S Pure CsI calorimeter Tagging by event position MC acceptance correction Maximize statistics

M. Sozzi - Kaon physics

NA48 at CERN

Simultaneous near/far targets Converging beams (=100 GeV/c) Liquid Kr calorimeter Tagging by time-of-flight Lifetime weighting to minimize acceptance correction

June 5th, 2003

Data Taking Periods

June 5th, 2003

M. Sozzi - Kaon physics

Ways towards direct CPV

$Re(\epsilon'/\epsilon)$ Results

$Re(\epsilon'/\epsilon)$ and the SM

Despite huge efforts, ε'/ε not yet computed reliably Measured value is roughly compatible with the SM Expect improvements from lattice

Other kaon Parameters

June 5th, 2003

M. Sozzi - Kaon physics

Semileptonic Charge Asymmetry

CPT test using $\pi\pi$ data: Re(y+x_/2+a) = (-5 ± 31) × 10^{-6}

June 5th, 2003

M. Sozzi - Kaon physics

KLOE at DAΦNE

 $\Gamma(\text{KS} \to \pi^{+}\pi^{-}(\gamma))/\Gamma(\text{KS} \to \pi^{0}\pi^{0}) = (2.236 \pm 0.003 \pm 0.015)$ from which $\delta_{0} - \delta_{2} \cong (48 \pm 3)^{\circ}$ (2000 data)

BR(K $\pm \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$) = (1.807 $\pm 0.008 \pm 0.018$)%

Good prospects for rare K_s decays, interferometry, new IR

Peak luminosity: 8×10³¹ cm⁻² s⁻¹ in 2002 Goal: 5×10³² cm⁻² s⁻¹ 500 pb⁻¹ (1.5 ×10⁹ φ) collected so far

M. Sozzi - Kaon physics

June 5th, 2003

E799-II (KTeV): Rare K_L decays

Intense KL flux allows sensitive searches; checks of χPT

 $K_L \rightarrow e^+e^-\gamma$ (1997, 93K events - norm. $\pi^0\pi^0\pi^0_D$):

Preliminary BR(K_L \rightarrow e⁺e⁻ γ) = (10.13 ± 0.04 ± 0.06 ± 0.29_{norm}) × 10⁻⁶

 $K_L \rightarrow e^+e^- e^+e^-$ (1997+1999, 1K events - norm $\pi^0 \pi^0_{\ D} \pi^0_{\ D}$):

Preliminary BR(K_L \rightarrow e⁺e⁻e⁺e⁻) = (4.07 ± 0.12 ± 0.11 ± 0.16_{norm}) × 10⁻⁸

no CP violation found in decay plane asymmetry $K_{L} \rightarrow e^{+}e^{-}\mu + \mu - (1997 + 1999, 132 \text{ events} - \text{norm } \pi^{+}\pi^{-}\pi^{0}_{D})$:

BR($K_{L} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}) = (2.69 \pm 0.24 \pm 0.12) \times 10^{-9}$

New results expected soon with full 1997+1999 data sample: $K_L \rightarrow e^+e^- e^+e^-$ and $K_L \rightarrow e^+e^-\gamma$ form factors, $K_L \rightarrow \pi^+\pi^- e^+e^-$ update

June 5th, 2003

M. Sozzi - Kaon physics

$K_{L,S} \rightarrow \pi^+\pi^-e^+e^-$: why?

For K_L : interference gives indirect CP-violating asymmetry in the orientation of $\pi^+\pi^-$ and e^+e^- decay planes

Easier access to polarization asymmetry in $K \rightarrow \pi \pi \gamma$

Large (\approx 14%) asymmetries predicted

NA48/1 – Rare KS decays

Zvertex (cm)

June 5th, 2003

NA48/1 - Search for $K_S \rightarrow \pi^0 e^+ e^-$

2001 K_s run data analyzed - Result available very soon

M. Sozzi - Kaon physics

Search for $K_S \rightarrow 3\pi^0$

$$\eta_{000} = \frac{A(K_S \to 3\pi^0)}{A(K_L \to 3\pi^0)}$$

Expectation $\approx \epsilon$ Im (η_{000}) sensitive to direct CPV

 $\begin{array}{l} \textbf{CPLEAR (1999)} \\ \text{Re}(\eta_{000}) = 0.18 \pm 0.15 \\ \text{Im}(\eta_{000}) = 0.15 \pm 0.20 \end{array}$

Λ

SND, Novosibirsk (1999) BR(K_S \rightarrow 3 π^0) < 1.4×10⁻⁵

$$I_{3\pi^0}(t) \propto e^{-\Gamma_L t} + |\eta_{000}|^2 e^{-\Gamma_S t} +$$

 $2D(p)\left[\operatorname{Re}(\eta_{000})\cos(\Delta mt) - \operatorname{Im}(\eta_{000})\sin(\Delta mt)\right]e^{-(\Gamma_S + \Gamma_L)t/2}$

Hadron machines: search for interference term

NA48/1: $K_S \rightarrow 3\pi^0$

June 5th, 2003

M. Sozzi - Kaon physics

CPT Test From $K_s \rightarrow 3\pi^{\nu}$

Bell-Steinberger relation (unitarity) connects indirect CPT violation δ to CP-violating decays

$$(1+i\tan\phi_{SW})\left[\operatorname{Re}(\varepsilon)-i\operatorname{Im}(\delta)\right] = \sum_{f} \alpha_{f}$$
$$\tan\phi_{SW} = \frac{2\Delta m}{\Gamma_{S} - \Gamma_{L}} \qquad \alpha_{f} = (1/\Gamma_{S})A(K_{L} \to f)A^{*}(K_{S} \to f)$$

Largest contribution to the error from $f = 3\pi^0$ Preliminar After NA48/1: $Im(\delta) = (-1.2 \pm 3.0) \times 10^{-5}$

Assuming no CPT violation in the decay:

 $m(K^0) - m(\overline{K^0}) = (-1.7 \pm 4.2) \times 10^{-19} \text{ GeV}/c^2$

June 5th, 2003

M. Sozzi - Kaon physics

KEK E246: T-violation in $K^+ \rightarrow \pi^0 \mu^+ \nu$

Search for $P_T(\mu)$ orthogonal to $(\pi\mu)$ decay plane FSI in SM give $P_T < 10^{-5}$: probe of New Physics

660 MeV/c kaons stopped in absorber Combined result from 8.3M decays (1996-2000):

 $P_{T}(\mu)$ = (-1.12 ± 2.17 ± 0.9) × 10⁻³

LOI to reach 10⁻⁴ accuracy at J-PARC

June 5th, 2003

M. Sozzi - Kaon physics

 $NA48/2 - K^{\pm}$ decays

SIMULTANEOUS K⁺ AND K⁻ BEAMS

New simultaneous K+ and K- narrow band beam Kaon momentum spectrometer

M. Sozzi - Kaon physics

$NA48/2 - K^{\pm}$ physics

Search for direct CP violation in $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $\pi^{\pm}\pi^{0}\pi^{0}$ Dalitz plot slope asymmetries: $\delta(\Delta g/2g) \approx 2 \times 10^{-4}$ (SM, SUSY: 10⁻⁴ to 10⁻⁶) Exploit "double ratio" cancellations Precise measurement of $\pi\pi$ interaction in K_{e4} decays (>10⁶) $\delta(a_0^0) \approx 0.01$ Rare K[±] decays and CP violation ≈10¹¹ K[±] decays expected Currently taking data

OKA (a) Protvino - K^{\pm}

New RF-separated beam at U-70 PS in construction 15 GeV/c kaons, alternating K+ or K-Magnetic detector evolved from ISTRA+, GAMS In preparation, expected 2004 Measurement of 3π Dalitz plot asymmetries @ 1 ×10⁻⁴ T-odd correlations, search for New Physics in K₁₂ decays

June 5th, 2003

June 5th, 2003

M. Sozzi - Kaon physics

The golden modes: $K \rightarrow \pi \nu \nu$

FCNC, loop-induced, GIM-suppressed in SM Sensitive to New Physics

MOREOVER:

No long-range contributions QCD corrections under control Single H_{eff} operator with matrix element linked to K_{e3}

BUT:

 $BR\approx 10^{\text{-}11},$ unconstrained kinematics, huge backgrounds

Dedicated efforts required!

M. Sozzi - Kaon physics

Kaons and the unitarity triangle

Comparison to B constraints (10% on BR):

- •Errors on ρ , V_{td} : better from B
- •Errors on η , sin2 β : similar to B-factories

•Error on λ_t : always better from K

A. Buras, hep-ph/9905437

The rare decays $K_L \rightarrow \pi^0 I^+I^-$

Three contributions:

- CP-conserving through K_L → π⁰γ*γ*
 estimate from K_L → π⁰γγ (KTeV/NA48 disagreement?)
 Indirect CP-violating through K_S → π⁰l⁺l⁻
 Not suppressed, unlike the vv case:
 measure from K_S → π⁰l⁺l⁻ (NA48 for e⁺e⁻)
 "Direct" CP-violating, short-distance, reliably predicted and
 - interfering with (2): BR=4.3×10⁻¹² (e^+e^-), 0.9×10⁻¹² ($\mu^+\mu^-$).

(3) is smaller by ≈ 5 for the $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ case

"Greenlee" background $K_L \rightarrow \gamma \gamma l^+ l^-$: BR=6×10⁻⁷ (e⁺e⁻), 1 ×10⁻⁷ ($\mu^+ \mu^-$)

June 5th, 2003

M. Sozzi - Kaon physics

June 5th, 2003

M. Sozzi - Kaon physics

Future: CKM at FNAL

In-flight measurement RF-separated 22 GeV/*c* K⁺ beam

Redundant measurements to overconstrain kinematics (spectrometers + RICHs) Progress on RF-cavities, photon vetos, straws in vacuum Goal: 100 SM events in 2 years (S/B \approx 10) Data taking in 2007

No CP-conserving term Indirect CP-violating term negligible

Theoretical prediction within the SM:

 $\begin{array}{l} BR(K_L \rightarrow \pi^0 \nu \overline{\nu}) = 2.7 \times 10^{-11} \\ \text{With tiny (\approx 2\%$) uncertainty} \end{array}$

Current KTeV limit: BR($K_L \rightarrow \pi^0 v \overline{v}$) < 5.9 ×10⁻⁷ (90% CL) Using $\pi^0 \rightarrow \gamma e^+e^-$ decay

KEK E391a: $K_L \rightarrow \pi^0 \nu \nu^-$

Pilot project at KEK-PS 2 GeV/c "pencil" beam: P_T cut against $\pi^0\pi^0$ to reduce veto requirement to 10^{-4} Double decay chamber, 10% acceptance "Engineering run" in fall 2002: CsI calibration, $K_L \rightarrow \pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$ First data run in 2004 (4 months)

June 5th, 2003

M. Sozzi - Kaon physics

$K_L \rightarrow \pi^0 \nu \nu$ at J-PARC

J-PARC schedule: physics start in 2008 50 GeV (30-40 at start) 2×10^{14} p/3.42 s

2 beam lines foreseen in K-hall 2 GeV/c K_L (1.1×10⁹/pulse)

16% acceptance Goal: 1000 SM events

June 5th, 2003

M. Sozzi - Kaon physics

M. Sozzi - Kaon physics

12:00 o'clock

KOPIO at BNL

Several feasibility results achieved:

PHENIX(p

Beam bunching performance proved (280 ns, goal: 200 ns)

25 mrad resolution with preradiator

Veto efficiency performances

Construction from 2006

Expect 40 SM events (S/B \approx 2)

June 5th, 2003

M. Sozzi - Kaon physics

How is kaon physics?

CERN: NA48 (K_1) NA48/1 (K_5) analysis, NA48/2 (K^{\pm}) running **FNAL**: KTeV (K_1) and HyperCP (K^{\pm}) analysis, CKM (K^{\pm}) in preparation BNL: E949 (K⁺) analysis, KOPIO (K_L) in preparation KEK: E246 (K⁺) analysis, E391a (K_L) ready to run Frascati: KLOE (K_{LS}, K[±]) running, upgrades? Protvino: OKA (K[±]) in preparation Novosibirsk: VEPP-2000 machine (K_{L.S}, K[±]) in preparation J-PARC: Neutral K beam line foreseen

Alive and kicking!

June 5th, 2003

M. Sozzi - Kaon physics

Conclusions?

Once upon a time, kaons delivered many surprises and precious insight...

... they are still doing so today, and they will in the near future!

June 5th, 2003

M. Sozzi - Kaon physics

Spare slides

 $K_L \rightarrow \pi^+ \pi^- e^+ e^-$

M. Sozzi - Kaon physics

 $K_{S} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$

June 5th, 2003

M. Sozzi - Kaon physics

KTeV limits on $K_L \rightarrow \pi^0 \nu \nu^-$

KTeV: ε'/ε improvements

Several improvements in the analysis to reduce systematic errors:

DCH simulation, alignment, reconstruction

Use of angles and improvements for overlapping showers in CsI reconstruction

Stat. Error $\approx 1 \times 10^{-4}$