Semileptonic & Rare Charm Decays

Will E. Johns Vanderbilt University FPCP 2003, June 4

Rare Charm Decays

Potential FCNC Decays are Suppressed

Box and Penguin Diagrams are Smallish for Charm

Rare Charm Decays

Enhancement from Long Distance Effects

Long Distance

Even More room for decays: $\rightarrow \mu^+ \mu^+ X$ $\rightarrow X \mu^+ e^-$

New Result from CDF $D^{O} \rightarrow \mu^{+} \mu^{-}$

New Result from CDF $D^{O} \rightarrow \mu^{+}\mu^{-}$

Background Sideband (Combinatorial Estimate)

New Result from CLEO

Form D⁰ mass from 2 photons (Cuts optimized on $D^{O} \rightarrow \pi^{O} \pi^{O}$)

Mass must be within $2.5\sigma_M$ of M(D⁰)

Veto candidate when extra photons form mass: $M(\pi^{O}) \pm 3\sigma_{M}$ (reduces $\pi^0 \pi^0$ bkgnd from 4 to 1)

Find soft pion consistent with D momentum cuts and Particle ID Form $Q = M(D^{*+}) - M(D^{O})$

Fit data to Gaussian and threshold function

Gaussian width and center fixed from Monte Carlo

New Result from CLEO $D^{O} \rightarrow \gamma \gamma$

$$\frac{BR(D^0 \to \gamma\gamma)}{BR(D^0 \to \pi^0 \pi^0)} = \frac{N_{RARE}}{N_{NORM}} \frac{eff_{NORM}}{eff_{RARE}} = 0.0194 \pm 0.0094$$
(stat)

Systematic error 13.1% from finding efficiencies, fits, MC stats, D selection, Event selection (added in quadrature with stat error for upper limit estimate)

Final Results from FOCUS

Use Dual Bootstrap

- First Bootstrap sets cuts for optimal Sensitivity (Blind)
 - Second Bootstrap calculates quoted Sensitivity and Branching Ratio

Final Results from FOCUS $D^+_{(S)} \rightarrow (\pi, K)^{\pm} \mu^{\mp} \mu^{+}$

Decay	Dual Bootstrap	Sensitivity	Sys. Error	Result W/svs	Single Cut(w/svs)	Previous (E791)
INIOUE	2001011.4p					(=:•:)
D ⁺ ⇔K⁺μ⁺μ⁻	9.1x10 ⁻⁶	7.5x10 ⁻⁶	7.5%	9.2x10 ⁻⁶	12x10 ⁻⁶	44x10 ⁻⁶
D ⁺ ⇔K⁻μ⁺μ⁺	13x10 ⁻⁶	4.8x10⁻ ⁶	7.5%	13x10 ⁻⁶	12x10⁻ ⁶	120x10 ⁻⁶
D ⁺ ⇔π⁺μ⁺μ⁻	8.8x10 ⁻⁶	7.6x10 ⁻⁶	7.5%	8.8x10 ⁻⁶	7.4x10 ⁻⁶	15x10 ⁻⁶
D ⁺ ⇔π⁻μ⁺μ⁺	4.9x10 ⁻⁶	5.6x10 ⁻⁶	7.5%	4.8x10 ⁻⁶	5.2x10 ⁻⁶	17x10 ⁻⁶
D _s ⁺ ⇔K⁺μ⁺μ⁻	3.3x10 ⁻⁵	3.3x10 ⁻⁵	27.5%	3.6x10 ⁻⁵	3.8x10 ⁻⁵	1.4x10 ⁻⁴
D _s ⁺ ⇔K⁻μ⁺μ⁺	1.3x10 ⁻⁵	2.1x10 ⁻⁵	27.5%	1.3x10 ⁻⁵	2.0x10 ⁻⁵	1.8x10 ⁻⁴
D _s ⁺ ⇔π ⁺ μ ⁺ μ ⁻	2.4x10 ⁻⁵	3.1x10⁻⁵	27.5%	2.6x10 ⁻⁵	1.8x10 ⁻⁵	1.4x10 ⁻⁴
D _s ⁺ ⇔π ⁻ μ ⁺ μ ⁺	2.6x10 ⁻⁵	2.3x10 ⁻⁵	27.5%	2.9x10 ⁻⁵	2.2x10 ⁻⁵	0.8x10 ⁻⁴

Dominated by PDG rate to normalizing mode

(E687)

Semileptonic Charm Decays

FOCUS saw discrepancies in the data

FOCUS BR Measurements $\frac{\Gamma(D^+ \to \overline{K}^{*0} \mu^+ \nu)}{\Gamma(D^+ \to K^- \pi^+ \pi^+)}, \frac{\Gamma(D_s^+ \to \phi \mu^+ \nu)}{\Gamma(D_s^+ \to \phi \pi^+)}$

Cuts similar to rare search:

ISO1^{IIII} ISO2 – No unused tracks consistent with charm vertex (CL < 0.1%)

OoM – Charm vertex outside of target and silicon by $3\sigma_{\it Vertex}$

 $M(K^{-}\pi^{+}\mu^{+}\{v\}) - M(K^{-}\mu^{+}\{v\}) > 0.18 \, GeV/c^{2} \, (\operatorname{cuts} D^{*^{+}} \to D^{0}\pi^{+})$

FOCUS Form Factors $D^+ \to \overline{K}^{*0} \mu^+ \nu$

$$H_{\pm}(q^{2}) = (M_{D} + m_{K\pi})A_{1}(q^{2}) \mp 2 \frac{M_{D}K}{M_{D} + m_{K\pi}} V(q^{2}) \qquad H_{t}(q^{2}) \text{ hs } m_{\mu}^{2} \text{ factor, set} = 0$$

$$Tried in fit, no sensitivity (E791?)$$

$$H_{0}(q^{2}) = \frac{1}{2m_{K\pi}\sqrt{q^{2}}} \left[(M_{D}^{2} - m_{K\pi}^{2} - q^{2})(M_{D} + m_{K\pi})A_{1}(q^{2}) - 4 \frac{M_{D}^{2}K^{2}}{M_{D} + m_{K\pi}}A_{2}(q^{2}) \right] \qquad \text{(E791?)}$$

$$A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/M_{A}^{2}}, (M_{A} = 2.5 \text{ GeV}/c^{2}) \qquad V(q^{2}) = \frac{V(0)}{1 - q^{2}/M_{V}^{2}}, (M_{V} = 2.1 \text{ GeV}/c^{2})$$
Fit to
$$\boxed{r_{v} = \frac{V(0)}{A_{1}(0)}} \qquad r_{2} = \frac{A_{2}(0)}{A_{1}(0)} \qquad \text{and S-wave parameters, } A \text{ and } \delta$$

(common – vary generated parameters in Montecarlo
 by using agreement with reconstructed distributions and data)
 Pioneered by D.M. Schmidt for E691 K*ev analysis: NIM A 328 (1993)

1st find S-wave with PDG rs, 3 bins in $\cos\theta_{V}$, 3 in $\cos\theta_{\ell}$, 3 in χ and 4 in $m_{K\pi}$ **then fit for rs S-wave term** Breaks symmetry 5 bins in $\cos\theta_{V}$, 5 in $\cos\theta_{\ell}$, 3 in $|\chi|$ and 3 in q^{2}/q_{max}^{2} . **S-wave term and S-wave term S-**

CLEO Form Factors and CP $\Lambda^+_C \rightarrow \Lambda^0 e^+ v$

XXXVIIIth Rencontres de Moriond

March 22-29, 2003

(From K. Stenson's APS review)

Semileptonic Round-up

$$\Lambda_{c}^{+} \rightarrow \Lambda^{0} e^{+} v$$
NO SUIPOISES
No CP violation
$$f_{2} / f_{1} \text{ close to expected}$$

$$\alpha_{\Lambda_{c}} \text{ Expect ~-1 from HQET}$$
Good agreement in the Distributions

I didn't miss 'em!

 $\Omega_C^0 \to \Omega^- \ell^+ \upsilon_\ell$ BELLE (Ruslan Chistov will cover in Spectroscopy)

 $D^0 \to K^{*+}e^-\nu$ CLEO (Too prelininary)

 $\Omega_C^0 \to \Omega^- e^+ \upsilon_e$ CLEO (Too preliminary)

 $D_S^+ \to \eta \ell \nu$ CLEO (Too preliminary)

Would be nice to measure:

$$D^{0} \rightarrow \pi^{+}e^{-}v_{e}, D^{0} \rightarrow K^{+}e^{-}v_{e}$$

 $D^{+} \rightarrow \overline{K}^{*0}\mu^{+}v$ Interference effects confirmed
 $D \rightarrow P\ell \upsilon / D \rightarrow V\ell \upsilon$
Rare Decays from CDF, BELLE and BARBAR