Theory introduction to charm physics

Alexey A. Petrov Wayne State University

Table of Contents:

1. Introduction
2. Spectroscopy
3. Leptonic and semileptonic decays
4. Mixing and Rare decays
5. Conclusions and outlook

1. Introduction: role of charm

1. Charm transitions serve as excellent probes of New Physics
2. Processes forbidden in the Standard Model to all orders (or very rare)

$$
\text { Examples: } \quad D^{0} \rightarrow \mu^{+} e^{-}
$$

2. Processes forbidden in the Standard Model at tree level

Examples: $\quad D^{0}-\overline{D^{0}}$ mixing, $D \rightarrow X \gamma, D \rightarrow X \nu \bar{\nu}$
3. Processes allowed in the Standard Model

Examples: relations, valid in the SM, but not necessarily in general
2. Provide unique QCD laboratory

Start from the bottom...

Introduction

Murphy's law:

Modern charm physics experiments acquire ample statistics; many decay rates are quite large.

THUS:

It is very difficult to provide model-independent theoretical description of charmed quark systems.

2. Charm Spectroscopy

HQL: Charm spectroscopy is "simple"

$$
\vec{S}=\vec{J}_{l}+\vec{S}_{Q}, \vec{J}_{l}=\vec{S}_{l}+\vec{L}_{l}
$$

good quantum numbers
> All states appear as doublets classified by parity and spin of light DoF:

$$
S^{P}=J_{l}^{P} \pm \frac{1}{2}
$$

L	0	1		2	
J_{l}	$1 / 2$	$1 / 2$	$3 / 2$	$3 / 2$	$5 / 2$
S	0,1	0,1	1,2	1,2	2,3

Spin			Exp. Data, MeV	
J_{l}^{P}	S^{P}	state	M	Γ
$1 / 2^{-}$	0^{-}	D_{s}	1969	$0.49 p s$
	I^{-}	$D_{s}{ }^{*}$	2110	<1.9
$1 / 2^{+}$	0^{+}	$D_{0}{ }^{*}$		
	1^{+}	$D_{l}{ }^{\prime}$		
$3 / 2^{+}$	1^{+}	$D_{s l}$	2536	<2.3
	2^{+}	$D_{s 2}$	2572	15

Charm Spectroscopy: new states

> BaBar/Belle/CLEO see new $D_{s,}$ * states:

Charm Spectroscopy: problem?

$>\mathrm{BaBar} /$ Belle/CLEO report new D_{sJ} states

$$
\begin{aligned}
D_{s J}^{*}(2317) & \rightarrow D_{s} \pi^{0}, D_{s J}(2463) \rightarrow D_{s}^{*} \pi^{0} \\
& \nrightarrow D_{s}^{*} \gamma, D_{s}^{*} \gamma \gamma, D_{s} \pi^{+} \pi^{-}
\end{aligned}
$$

$>$ Interpretation? 0^{+}and 1^{+}p-wave Qq states?

Possible problems:

1. Mass is too low?
2. Width is too narrow?

non-Qq state?

Barnes, Close, Lipkin; Szczepaniak, Bali 4-quark ("baryonium") state
$>\quad \mathrm{DK}$ or $\mathrm{D} \pi$ molecule?

1. mass is naturally in the vicinity of DK threshold
2. since $M\left(D_{s, J}(2130)\right)<M(D+K)$ width is naturally small

Charm Spectroscopy: problem?

$>\mathrm{BaBar} /$ Belle/CLEO report new D_{sJ} states

$$
\begin{aligned}
D_{s J}^{*}(2317) & \rightarrow D_{s} \pi^{0}, D_{s J}(2463) \rightarrow D_{s}^{*} \pi^{0} \\
& \nrightarrow D_{s}^{*} \gamma, D_{s}^{*} \gamma \gamma, D_{s} \pi^{+} \pi^{-}
\end{aligned}
$$

> Interpretation? 0^{+}and 1^{+}p-wave Qq states!

Possible problems:

1. Mass is too low?
2. Width is too narrow?

Broken chiral symmetry: positive parity-partners of $D_{s} D_{s}{ }^{*}$

Bardeen, Eichten, Hill

Reference	Mass
Ebert et. al. (98)	2.51 GeV
Godfrey-Isgur (85)	2.48 GeV
DiPierro-Eichten (01)	2.49 GeV
Gupta-Johnson (95)	2.38 GeV
Zeng et. al. (95)	2.38 GeV

Charm Spectroscopy

New states:

1. Why is $M\left(D_{S J}{ }^{*}(2130)\right)<M(D+K)$ and $M\left(D_{S J}{ }^{*}(2130)\right)<M\left(D^{*}+K\right) ?$

Van Beveren and Rupp
2. Interpretation? Radiative decays?

Godfrey; Colangelo and De Fazio
3. Similar states in D and B systems?

3. Leptonic and semileptonic decays

Form-factors and decay constants

- Heavy quark symmetry relates observables in B and D transitions

Example 1: decay constants $\quad\langle 0| A_{\mu}(0)|X(p)\rangle=f_{X} p_{\mu}$
HQS requires: $\quad \frac{f_{B}}{f_{D}}=\sqrt{\frac{M_{D}}{M_{B}}}+O(1 / M) \quad$ Large!

$$
\begin{gathered}
\text { HQS+Chiral symmetry: } \frac{f_{B_{s}} / f_{B}}{f_{D_{s}} / f_{D}}=1+O\left(m_{s}\right) \times O\left(1 / m_{b}-1 / m_{c}\right) \\
\frac{\Delta M_{d}}{\Delta M_{s}} \propto\left[\frac{\sqrt{B_{B_{d}}} f_{B_{d}}}{\sqrt{B_{B_{s}}} f_{B_{s}}}\right]^{2}\left[\frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}\right]^{2} \quad \frac{f_{D_{s}}}{f_{D}}=1-\frac{5}{6}\left(1+3 g^{2}\right) \frac{M_{K}^{2}}{16 \pi^{2} f^{2}} \log \left[M_{K}^{2} / \mu^{2}\right]+\ldots \\
D^{*} D \pi \text { coupling constant }
\end{gathered}
$$

- CLEO-c is expected to provide accurate measurements

	Reaction	CLEO-c CM Energy (MeV)	$\mathbf{L ~ f b}^{-1}$	PDG	CLEO-c
$f_{D s}$	$D_{s}^{+} \rightarrow \mu \nu$	4140	3	17%	1.7%
$f_{D s}$	$D_{s}^{+} \rightarrow \tau \nu$	4140	3	33%	1.6%
f_{D+}	$D^{+} \rightarrow \mu \nu$	3770	3	UL	2.3%

- If charm production data is used to obtain $\mathrm{V}_{\mathrm{cs}}\left(\delta \mathrm{V}_{\mathrm{cs}} / \mathrm{V}_{\mathrm{cs}} \sim 1.3 \%\right)$, the ratio gives information about decay constants
> input for lattice calculations

$$
\left|\mathrm{V}_{\mathrm{CKM}}\right|^{2}\left|\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)\right|^{2}
$$

Form-factors and decay constants

- Heavy quark symmetry relates observables in B and D transitions

Example 2: decay form-factors

$$
\begin{gathered}
\langle P| j_{\mu}|X(p)\rangle=f_{+}^{X P}\left(q^{2}\right)\left(p_{X}+p_{P}\right)_{\mu}+f_{-}^{X P}\left(q^{2}\right)\left(p_{X}-p_{P}\right)_{\mu} \\
\frac{d \Gamma}{d \mathrm{q}^{2}}=\frac{\mathrm{G}_{\mathrm{F}}}{24 \pi^{3}}\left|\mathrm{~V}_{\mathrm{cs}}\right|^{2} \mathrm{p}_{\mathrm{K}}^{3}\left|\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)\right|^{2} \quad \begin{array}{l}
\text { If charm production data is used to obtain } \mathrm{V}_{\mathrm{cs}} \\
\left(\delta \mathrm{~V}_{\mathrm{cs}} / \mathrm{V}_{\mathrm{cs}} 1.3 \%\right) \text {, the ratio gives information about } \\
\text { decay form factors }
\end{array} \\
\quad \begin{array}{l}
\quad>\mathrm{q}^{2} \text { shape can be measured }
\end{array} \\
\quad \text { input for lattice calculations }
\end{gathered}
$$

4. $\mathrm{D}^{0}-\overline{\mathrm{D}^{0}}$ mixing

Coupled oscillators
$\Delta \mathrm{Q}=2$: only at one loop in the Standard Model: possible new physics particles in the loop
$\Delta \mathrm{Q}=2$ interaction couples dynamics of D^{0} and $\overline{\mathrm{D}}^{0}$

$$
|D(t)\rangle=\binom{a(t)}{b(t)}=a(t)\left|D^{0}\right\rangle+b(t)\left|\overline{D^{0}}\right\rangle
$$

- Time-dependence: coupled Schrödinger equations

$$
i \frac{\partial}{\partial t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle=\left[\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right]|D(t)\rangle
$$

- Diagonalize: mass eigenstates \neq flavor eigenstates

$$
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\overline{D^{0}}\right\rangle
$$

Mass and lifetime differences of mass eigenstates: $\quad x=\frac{M_{2}-M_{1}}{\Gamma}, y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}$

CP violation in charm

- Possible sources of CP violation in charm:
$>$ CPV in decay amplitudes ("direct" CPV)

$$
A(D \rightarrow f) \neq A(\bar{D} \rightarrow \bar{f})
$$

$>\mathrm{CPV}$ in $D^{0}-\overline{D^{0}}$ mixing matrix

$$
R_{m}^{2}=\left|\frac{p}{q}\right|^{2}=\frac{2 M_{12}-i \Gamma_{12}}{2 M_{12}^{*}-i \Gamma_{12}^{*}} \neq 1
$$

$>\mathrm{CPV}$ in the interference of decays with and without mixing

$$
\lambda_{f}=\frac{q}{p} \frac{\overline{A_{f}}}{A_{f}}=R_{m} e^{i(\phi+\delta)}\left|\frac{\overline{A_{f}}}{\left\lvert\, \frac{A_{f}}{}\right.}\right|
$$

Mixing: why do we care?

$(*)$ up to matrix elements of 4-quark operators

How would new physics affect mixing?

- Look again at time development:

$$
i \frac{\partial}{\partial t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle=\left[\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right]|D(t)\rangle
$$

- Expand $\overline{D^{0}}-D^{0}$ mass matrix:

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{I} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

Local operator, affects x, possible new phsyics

> Real intermediate states, affect both x and $\mathrm{y} \Rightarrow \underline{\text { Standard Model }}$

1. $x \gg y$: signal for New Physics? $x \approx y$: Standard Model?
2. CP violation in mixing/decay $\begin{gathered}\text { new CP-violating phase } \phi\end{gathered}\left\{\begin{array}{c}\text { With b-quark contribution neglected: } \\ \text { only } 2 \text { generations contribute } \\ \Rightarrow \text { real } 2 \times 2 \text { Cabibbo matrix }\end{array}\right.$

Experimental constraints

1. Time-dependent $D^{0}(t) \rightarrow K^{+} \pi^{-}$analysis

$$
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}\left[R+\sqrt{R} R_{m}\left(y^{\prime} \cos \phi-x^{\prime} \sin \phi\right) \Gamma t+\frac{R_{m}^{2}}{4}\left(y^{2}+x^{2}\right)(\Gamma t)^{2}\right]
$$

Sensitive to DCS/CF strong phase
2. Time-dependent $D^{0}(t) \rightarrow K^{+} K^{-}$analysis (lifetime difference)

$$
y_{C P}=\frac{\tau\left(D \rightarrow \pi^{+} K^{-}\right)}{\tau\left(D \rightarrow K^{+} K^{-}\right)}-1=y \cos \phi-x \sin \phi \frac{A_{m}}{2}
$$

3. Semileptonic analysis rate $\propto x^{2}+y^{2}$

$$
\text { Quadratic in } \mathrm{x}, \mathrm{y}: \text { not so sensitive }
$$

4. Time-independent analysis at tau-charm factory: (QM) entangled initial state

$$
\begin{array}{r}
y \cos \phi=(-1)^{L} \sigma \frac{R_{\sigma}^{L}-1}{R_{\sigma}^{L}} \quad R_{\sigma}^{L}=\frac{1}{B r\left(D^{0} \rightarrow X l v\right)} \frac{\Gamma\left[\psi_{L} \rightarrow\left(D \rightarrow[C P]_{\sigma}\right)(D \rightarrow X l v)\right]}{\Gamma\left[\psi_{L} \rightarrow\left(D \rightarrow[C P]_{\sigma}\right)(D \rightarrow X)\right]} \\
\text { D. Atwood and A.A.P., hep-ph/0207165 }
\end{array}
$$

Experimental constraints 1

$\mathrm{D}^{\mathbf{0}} \mathbf{- D}^{\mathbf{0}}$ Mixing Limits

1. Time-dependent $D^{0}(t) \rightarrow K^{+} \pi^{-}$analysis

$$
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}
$$

Can be measured at CLEO-c!

Experimental constraints 2

What are the expectations for x and y ?
World average: $\mathrm{y}_{\mathrm{CP}}=(1.0 \pm 0.7) \%$

Theoretical estimates

Theoretical estimates I

A. Short distance gives a tiny contribution, consider y as an example m_{c} IS large !!!

$$
y=\frac{1}{m_{D} \Gamma}\left\langle D^{0}\right| T\left|\bar{D}^{0}\right\rangle
$$

\ldots as can be seen form the straightforward computation...
$\Rightarrow \begin{aligned} y_{s d} & =\frac{N_{C}+1}{2 \pi N_{C} \Gamma} X_{D} \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2}+m_{d}^{2}}{m_{c}^{2}} \\ & -\frac{2\left(2 N_{C}-1\right)}{1+N_{C}} \frac{B_{D}^{\prime}}{B_{D}} \frac{M_{D}^{2} C_{2}^{2}}{\left(m_{c}+m_{u}\right)^{2}}\left(1+\left(N_{C}^{2}+2 C_{1} C_{2}+C_{1}^{2} N_{C}^{2}+2 \frac{C_{1}^{2}}{C_{2}}\right) \frac{2-N_{C}}{2 N_{C}-1}\right)\end{aligned}$
with $\left\langle D^{0}\right| \bar{u} \Gamma_{\mu} c \bar{u} \Gamma^{\mu} c\left|D^{0}\right\rangle=\frac{1+N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}$, etc.

similar for x (trust me!)

Theoretical estimates I

A. Short distance + "subleading corrections" (in $1 / m_{c}$ expansion):

$$
\begin{aligned}
& y_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2}+m_{d}^{2}}{m_{c}^{2}} \mu_{\text {had }}^{-2} \propto m_{s}^{6} \Lambda^{-6} \\
& x_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \mu_{\text {had }}^{-2} \propto m_{s}^{4} \Lambda^{-4}
\end{aligned}
$$

...subleading effects?

$$
\begin{array}{llll}
y_{s d}^{(9)} & \propto & m_{s}^{3} & \Lambda^{-3} \\
x_{s d}^{(9)} & \propto & m_{s}^{3} & \Lambda^{-3}
\end{array}
$$

15 unknown matrix elements

Georgi, ...
Bigi, Uraltsev

$$
\begin{array}{|lcc|}
y_{s d}^{(12)} \propto & \beta_{0} \alpha_{s}^{2}(\mu) m_{s}^{2} \Lambda^{-2} \\
x_{s d}^{(12)} \propto & \alpha_{S}(\mu) m_{s}^{2} \Lambda^{-2}
\end{array}
$$

Twenty-something unknown matrix elements
\longrightarrow Leading contribution!!!
$d=12$
Guestimate: $\quad \mathrm{x} \sim \mathrm{y} \sim 10^{-3}$?

Resume: model-independent computation with modeldependent result

Theoretical estimates II

B. Long distance physics dominates the dynamics...
$y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]$
\ldots with n being all states to which D^{0} and $\overline{\mathrm{D}}^{0}$ can decay. Consider $\pi \pi, \pi \mathrm{K}, \mathrm{KK}$ intermediate states as an example...

$$
\begin{aligned}
& y_{2}=\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
&-2 \cos \delta \sqrt{\operatorname{Br}\left(D^{0} \rightarrow K^{+} \pi^{-}\right) \operatorname{Br}\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}
\end{aligned}
$$

Donoghue et. al.
Colangelo et. al.

If every Br is known up to $O(1 \%) \quad \Rightarrow \quad$ the result is expected to be $O(1 \%)$!
The result here is a series of large numbers with alternating signs, $\underline{S U(3) \text { forces } 0}$
need to restructure the calculation...

Resume: model-dependent computation with modeldependent result

Theoretical expectations: $\mathrm{SU}(3)$ breaking

- Neglecting the third generation, mixing arises at second order in $\mathrm{SU}(3)$ breaking

$$
x, y \sim \sin ^{2} \vartheta_{C} \varepsilon_{S U(3)}^{2}
$$

- Known counter-example:

Does not work if there is a very narrow light quark resonance with $m_{R} \sim m_{D}$
$x, y \sim \frac{g_{D R}^{2}}{m_{D}^{2}-m_{R}^{2}} \sim \frac{g_{D R}^{2}}{m_{D}^{2}-m_{0}^{2}-2 m_{0} \delta_{R}}$

Most probably don't exists...
see E.Golowich and A.A.P. Phys.Lett. B427, 172, 1998

- What happens if part of the multiplet is kinematically forbidden?

Example: both $D^{0} \rightarrow 4 \pi$ and $D^{0} \rightarrow 4 K$ are from the same multiplet, but the latter is kinematically forbidden

> Mixing is dominated by 4-body intermediate state contribution, incomplete cancellations naturally imply that $y \sim \mathbf{1 \%}$
see A.F., Y.G., Z.L., and A.A.P. Phys.Rev. D65, 054034, 2002

FCNC in charm: why do we care?

Rare charm decays	Rare beauty decays
- intermediate down-type quarks - SM: b-quark contribution is very small due to V_{ub} - rate $\propto f\left(m_{s}\right)-f\left(m_{d}\right)$ (zero in the $\mathrm{SU}(3)$ limit)	- intermediate up-type quarks - SM: t-quark contribution is dominant - rate $\propto f\left(m_{t}^{2}\right)$ (expected to be large)
1. Sensitive to long distance QCD 2. Sensitive to New Physics!	1. Computable in $\mathrm{QCD}(*)$ 2. Large in the SM: CKM!

$\left({ }^{*}\right)$ depending on the process: OPE, factorization, \ldots

FCNC charm decays

1. In many cases NP contribution "gives a larger contribution" than the Standard Model
2. Example: \mathbb{R} SUSY

$$
\delta H=-\frac{\hat{\lambda}_{i 2 k}^{\prime} \tilde{\lambda}_{i 1 k}^{\prime}}{2 m_{\tilde{d}_{R}^{k}}^{2}}\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{l}_{L} \gamma^{\mu} l_{L}\right)
$$

...or MSSM for different values of squark masses
see Burdman, Golowich, Hewett and Pakvasa
Phys.Rev. D66, 014009, 2002

5. Conclusions

> Did not talk about:

- Lifetimes and inclusive semileptonic decays
- applications of $1 / \mathrm{m}$ techniques
- Charmed baryons and double-charmed baryons
- issues in double-charmed baryon production
- Exclusive nonleptonic charm decays
- direct CP violation
- Charmonium production and polarization
$-\mathrm{J} / \psi$ production in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
- ...

Conclusions

$>$ Spectroscopy: what are the new $\mathrm{D}_{\mathrm{sJ}}{ }^{*}$ states?

- low mass triggers many possible explanations
> Leptonic and semileptonic decays
- important inputs to B-physics/CKM extractions
$>$ Charm mixing:
$-\mathrm{x}, \mathrm{y}=0$ in the $\mathrm{SU}(3)$ limit $\left(\right.$ as $\mathrm{V}^{*}{ }_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}$ is very small)
- it is a second order effect
- it is quite possible that $y \sim 1 \%$ with $x<y$
- expect new data from BaBar/Belle/CLEO/CLEO-c/CDF
$>$ Observation of CP-violation or FCNC transitions in the current round of experiments are still "smoking gun" signals for New Physics

Additional Slides

Questions:

1. Can any model-independent statements be made for x or y ?

What is the order of $\mathrm{SU}(3)$ breaking?
i.e. if $x, y \propto m_{s}^{n}$ what is n ?
2. Can one claim that $y \sim 1 \%$ is natural?

Theoretical expectations

At which order in $\mathrm{SU}(3)_{\mathrm{F}}$ breaking does the effect occur? Group theory?

$$
\left\langle D^{0}\right| H_{W} H_{W}\left|\bar{D}^{0}\right\rangle \Rightarrow\langle 0| D H_{W} H_{W} D|0\rangle
$$

is a singlet with $D \rightarrow D_{i}$ that belongs to 3 of $\operatorname{SU}(3)_{F}$ (one light quark)

The $\Delta \mathrm{C}=1$ part of H_{W} is $\left(\bar{q}_{i} c\right)\left(\bar{q}_{j} q_{k}\right)$, i.e. $3 \times \overline{3} \times \overline{3}=\overline{15}+6+\overline{3}+\overline{3} \Rightarrow H_{k}^{i j}$

$$
\begin{aligned}
O_{\overline{15}} & =(\bar{s} d)(\bar{u} d)+(\bar{u} c)(\bar{s} d)+s_{1}(\bar{d} c)(\bar{u} d)+s_{1}(\bar{u} c)(\bar{d} d) \\
& -s_{1}(\bar{s} c)(\bar{u} s)-s_{1}(\bar{u} c)(\bar{s} s)-s_{1}^{2}(\bar{d} c)(\bar{u} s)-s_{1}^{2}(\bar{u} c)(\bar{d} s) \\
O_{6} & =(\bar{s} d)(\bar{u} d)-(\bar{u} c)(\bar{s} d)+s_{1}(\bar{d} c)(\bar{u} d)-s_{1}(\bar{u} c)(\bar{d} d) \\
& -s_{1}(\overline{s c})(\bar{u} s)+s_{1}(\bar{u} c)(\bar{s} s)-s_{1}^{2}(\bar{d} c)(\bar{u} s)+s_{1}^{2}(\bar{u} c)(\bar{d} s)
\end{aligned}
$$

Introduce $\operatorname{SU}(3)$ breaking via the quark mass operator $M_{j}^{i}=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$

$$
\text { All nonzero matrix elements built of } D_{i}, H_{k}^{i j}, M_{j}^{i} \text { must be } \mathrm{SU}(3) \text { singlets }
$$

Theoretical expectations

note that $D_{i} D_{j}$ is symmetric $\quad \Rightarrow \quad$ belongs to 6 of $S U(3)_{F}$

$$
\begin{aligned}
& \qquad\left\langle D^{0}\right| H_{W} H_{W}\left|\bar{D}^{0}\right\rangle \Rightarrow\langle 0| D H_{W} H_{W} D|0\rangle \\
& \text { Explicitly, } \quad D D \Rightarrow D_{6} \\
& H_{W} H_{W} \Rightarrow O_{\overline{60}}+O_{42}+O_{15}
\end{aligned}
$$

1. No $\overline{6}$ in the decomposition of $H_{W} H_{W} \Rightarrow$ no $\operatorname{SU}(3)$ singlet can be formed
\Rightarrow D mixing is prohibited by $\operatorname{SU}(3)$ symmetry
2. Consider a single insertion of $M_{j}^{i} \Rightarrow D_{6} M$ transforms as $6 \times 8=24+\overline{15}+6+\overline{3} \Rightarrow$ still no $\mathrm{SU}(3)$ singlet can be formed
\Rightarrow NO D mixing at first order in $\mathrm{SU}(3)$ breaking
3. Consider double insertion of $M \Rightarrow D M M: 6 \times(8 \times 8)_{S}=(60+\overline{42}+24+\overline{15}+\overline{15}+6)$

$$
+(24+15+6+\overline{3})+6
$$

Theoretical expectations: $\mathrm{SU}(3)$ breaking

- Two major sources of $\mathrm{SU}(3)$ breaking

1. phase space

$$
m_{K} \neq m_{\pi} \neq m_{\eta} \ldots
$$

2a. matrix elements (absolute value)

$$
f_{K} \neq f_{\pi} \ldots
$$

2b. matrix elements (phases a.k.a. FSI)

$$
\operatorname{Im} \frac{A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)} \neq 0
$$

Take into account only the first source...

SU(3) and phase space

- "Repackage" the analysis: look at the complete multiplet contribution

- Does it help? If only phase space is taken into account: n (mild) model dependence

Example: PP intermediate states

- $n=P P$ transforms as $(8 \times 8)_{s}=27+8+1$, take 8 as an example:

Numerator:

$$
\begin{aligned}
A_{N, 8} & =\left|A_{0}\right|^{2} s_{1}^{2}\left[\frac{1}{2} \Phi(\eta, \eta)+\frac{1}{2} \Phi\left(\pi^{0}, \pi^{0}\right)+\frac{1}{3} \Phi\left(\eta, \pi^{0}\right)+\Phi\left(\pi^{+}, \pi^{-}\right)-\Phi\left(\bar{K}^{0}, \pi^{0}\right)\right. \\
& \left.+\Phi\left(K^{+}, K^{-}\right)-\frac{1}{6} \Phi\left(\eta, K^{0}\right)-\frac{1}{6} \Phi\left(\eta, \bar{K}^{0}\right)-\Phi\left(K^{+}, \pi^{-}\right)-\Phi\left(K^{-}, \pi^{+}\right)\right]
\end{aligned}
$$

Denominator:

$$
A_{D, 8}=\left|A_{0}\right|^{2}\left[\frac{1}{6} \Phi\left(\eta, K^{0}\right)+\Phi\left(K^{+}, \pi^{-}\right)+\frac{1}{2} \Phi\left(K^{0}, \pi^{0}\right)+O\left(s_{1}^{2}\right)\right]
$$

- This gives a calculable effect!

$$
y_{2,8}=\frac{A_{N, 8}}{A_{D, 8}}=-0.038 s_{1}^{2}=-1.8 \times 10^{-4}
$$

1. Repeat for other states
2. Multiply by $\mathrm{Br}_{\mathrm{Fr}}$ to get y

Results

