Theory introduction to charm physics

Alexey A. Petrov Wayne State University

Table of Contents:

- 1. Introduction
- 2. Spectroscopy
- 3. Leptonic and semileptonic decays
- 4. Mixing and Rare decays
- 5. Conclusions and outlook

1. Introduction: role of charm

- 1. Charm transitions serve as excellent probes of New Physics
 - 1. Processes forbidden in the Standard Model to all orders (or very rare)

Examples: $D^0 \rightarrow \mu^+ e^-$

2. Processes forbidden in the Standard Model at tree level

Examples: $D^0 - \overline{D^0}$ mixing, $D \to X\gamma$, $D \to X\nu\overline{\nu}$

3. Processes allowed in the Standard Model

Examples: relations, valid in the SM, but not necessarily in general

2. Provide unique QCD laboratory

 $D^0 \longrightarrow c$

Start from the bottom...

Introduction

Murphy's law:

Modern charm physics experiments acquire ample statistics; many decay rates are quite large.

THUS:

It is very difficult to provide model-independent theoretical description of charmed quark systems.

2. Charm Spectroscopy

HQL: Charm spectroscopy is "simple"

$$\vec{S} = \vec{J}_l + \vec{S}_Q, \ \vec{J}_l = \vec{S}_l + \vec{L}_l$$

decouples

good quantum numbers

All states appear as doublets classified by parity and spin of light DoF:

$$S^P = J_l^P \pm \frac{1}{2}$$

L	0]	l		2
J_l	1/2	1/2	3/2	3/2	5/2
S	0,1	0,1	1,2	1,2	2,3

Sp	oin		Exp. Da	ta, MeV
J_l^P	S^{P}	state	M	Г
1/2-	0-	D_s	1969	0.49 ps
	1-	D_s^*	2110	<1.9
1/2+	0+	D_0^*		
	1+	D_1 '		
3/2+	1+	D_{sl}	2536	<2.3
	2+	D_{s2}	2572	15

Alexey Petrov (Wayne State Univ.)

Charm Spectroscopy: new states

Alexey Petrov (Wayne State Univ.)

Charm Spectroscopy: problem?

Alexey Petrov (Wayne State Univ.)

Charm Spectroscopy: problem?

➤ Interpretation? 0⁺ and 1⁺ p-wave Qq states!

Possible problems:

2. Width is too narrow?

Broken chiral symmetry: positive parity-partners of D_s D_s*

Bardeen, Eichten, Hill

Reference	Mass
Ebert et. al. (98)	2.51 GeV
Godfrey-Isgur (85)	2.48 GeV
DiPierro-Eichten (01)	2.49 GeV
Gupta-Johnson (95)	2.38 GeV
Zeng et. al. (95)	2.38 GeV

Alexey Petrov (Wayne State Univ.)

Charm Spectroscopy

New states:

1. Why is $M(D_{sJ}^{*}(2130)) < M(D+K)$ and $M(D_{sJ}^{*}(2130)) < M(D*+K)$?

Van Beveren and Rupp

2. Interpretation? Radiative decays?

Godfrey; Colangelo and De Fazio

3. Similar states in D and B systems?

Alexey Petrov (Wayne State Univ.)

3. Leptonic and semileptonic decays

Form-factors and decay constants

Heavy quark symmetry relates observables in B and D transitions

CLEO-c is expected to provide accurate measurements

	Reaction	CLEO-c CM Energy (MeV)	L fb ⁻¹	PDG	CLEO-c
f_{Ds}	$D_{s}^{+} \to \mu v$	4140	3	17%	1.7%
f_{Ds}	$D_{s}^{+} \rightarrow \tau v$	4140	3	33%	1.6%
f_{D^+}	$D^{\star} \rightarrow \mu \nu$	3770	3	UL	2.3%

• If charm production data is used to obtain V_{cs} ($\delta V_{cs}/V_{cs} \sim 1.3\%$), the ratio gives information about decay constants

input for lattice calculations

Form-factors and decay constants

Heavy quark symmetry relates observables in B and D transitions

Example 2: decay form-factors

$$\langle P|j_{\mu}|X(p)\rangle = f_{+}^{XP}(q^{2})(p_{X}+p_{P})_{\mu} + f_{-}^{XP}(q^{2})(p_{X}-p_{P})_{\mu}$$

q² shape can be measured
input for lattice calculations

4. $D^0-\overline{D^0}$ mixing

D-D mixing

Coupled oscillators

 $\Delta Q=2$: only at one loop in the Standard Model: possible new physics particles in the loop

 $\Delta Q=2$ interaction couples dynamics of D⁰ and D⁰

$$\left| D(t) \right\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t) \left| D^{0} \right\rangle + b(t) \left| \overline{D^{0}} \right\rangle$$

• Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}\left|D\left(t\right)\right\rangle = \left(M - \frac{i}{2}\Gamma\right)\left|D\left(t\right)\right\rangle = \left[\begin{array}{cc}A & p^{2}\\ q^{2} & A\end{array}\right]\left|D\left(t\right)\right\rangle$$

• Diagonalize: mass eigenstates \neq flavor eigenstates $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D^0}\rangle$

 $x = \frac{M_2 - M_1}{\Gamma}, \ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$

Mass and lifetime differences of mass eigenstates:

FPCP 03, June 3-6 2003 (Paris)

Alexey Petrov (Wayne State Univ.)

CP violation in charm

• Possible sources of CP violation in charm:

CPV in decay amplitudes ("direct" CPV)

$$A(D \to f) \neq A(\overline{D} \to \overline{f})$$

> CPV in $D^0 - \overline{D^0}$ mixing matrix

$$R_m^2 = \left|\frac{p}{q}\right|^2 = \frac{2M_{12} - i\Gamma_{12}}{2M_{12}^* - i\Gamma_{12}^*} \neq 1$$

> CPV in the interference of decays with and without mixing

$$\lambda_f = \frac{q}{p} \frac{\overline{A_f}}{A_f} = R_m e^{i(\phi + \delta)} \left| \frac{\overline{A_f}}{A_f} \right|$$

Mixing: why do we care?

(*) up to matrix elements of 4-quark operators

How would new physics affect mixing?

• Look again at time development:

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \begin{bmatrix}A & p^{2}\\ q^{2} & A\end{bmatrix}|D(t)\rangle$$

• Expand $\overline{D^0} - D^0$ mass matrix:

FPCP 03, June 3-6 2003 (Paris)

Alexey Petrov (Wayne State Univ.)

Experimental constraints

1. Time-dependent $D^0(t) \to K^+ \pi^-$ analysis

$$\Gamma \Big[D^0(t) \to K^+ \pi^- \Big] = e^{-\Gamma t} \Big| A_{K^+ \pi^-} \Big|^2 \Big[R + \sqrt{R} R_m \big(y' \cos \phi - x' \sin \phi \big) \Gamma t + \frac{R_m^2}{4} \big(y^2 + x^2 \big) \big(\Gamma t \big)^2 \Big] \Big]$$

Sensitive to DCS/CF strong phase

2. Time-dependent $D^0(t) \rightarrow K^+K^-$ analysis (lifetime difference)

$$y_{CP} = \frac{\tau(D \to \pi^+ K^-)}{\tau(D \to K^+ K^-)} - 1 = y \cos \phi - x \sin \phi \frac{A_m}{2}$$

3. Semileptonic analysis rate $\propto x^2 + y^2$

Quadratic in x,y: not so sensitive

4. Time-independent analysis at tau-charm factory: (QM) entangled initial state

$$y\cos\phi = (-1)^{L}\sigma\frac{R_{\sigma}^{L}-1}{R_{\sigma}^{L}} \qquad R_{\sigma}^{L} = \frac{1}{Br\left(D^{0} \to Xl v\right)} \frac{\Gamma[\psi_{L} \to (D \to [CP]_{\sigma})(D \to Xl v)]}{\Gamma[\psi_{L} \to (D \to [CP]_{\sigma})(D \to X)]}$$

D. Atwood and A.A.P., hep-ph/0207165

Alexey Petrov (Wayne State Univ.)

Experimental constraints 1

Alexey Petrov (Wayne State Univ.)

Experimental constraints 2

What are the expectations for x and y?

World average: $y_{CP} = (1.0 \pm 0.7)\%$

Alexey Petrov (Wayne State Univ.)

Theoretical estimates

- Theoretical predictions are all over the board...
- > Nevertheless, it can be that $y \sim 1\%$!

Falk, Grossman, Ligeti, A.A.P., Phys.Rev. D65, 054034, (2002)

- Seems like D-system is unique in that y >> x!
- but sensitivity to new physics is reduced

Alexey Petrov (Wayne State Univ.)

Theoretical estimates I

A. Short distance gives a tiny contribution, consider y as an example m_c IS large !!!

... as can be seen form the straightforward computation...

$$y_{sd} = \frac{N_{c} + 1}{2 \pi N_{c} \Gamma} X_{D} \frac{\left(m_{s}^{2} - m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2} + m_{d}^{2}}{m_{c}^{2}} \left[C_{2}^{2} + 2C_{1}C_{2} + C_{1}^{2}N_{C} - \frac{2(2N_{c} - 1)}{1 + N_{c}} \frac{B_{D}^{'}}{B_{D}} \frac{M_{D}^{2}C_{2}^{2}}{(m_{c} + m_{u})^{2}} \left(1 + \left(N_{c}\frac{C_{1}^{2}}{C_{2}^{2}} + 2\frac{C_{1}}{C_{2}}\right)\frac{2 - N_{c}}{2N_{c} - 1}\right)$$

with
$$\left\langle D^{0} \mid \overline{u} \Gamma_{\mu} c \ \overline{u} \Gamma^{\mu} c \mid D^{0} \right\rangle = \frac{1 + N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}, etc.$$

4 unknown matrix elements

similar for x (trust me!)

Alexey Petrov (Wayne State Univ.)

Theoretical estimates I

A. Short distance + "subleading corrections" (in $1/m_c$ expansion):

$$y_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)^2}{m_c^2} \frac{m_s^2 + m_d^2}{m_c^2} \mu_{had}^{-2} \propto m_s^6 \Lambda^{-6}$$

$$x_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)^2}{m_c^2} \mu_{had}^{-2} \propto m_s^4 \Lambda^{-4}$$
4 unknown matrix elements

...subleading effects?
$$y_{sd}^{(9)} \propto m_s^3 \Lambda^{-3}$$

$$x_{sd}^{(9)} \propto m_s^2 (\mu) m_s^2 \Lambda^{-2}$$

$$y_{sd}^{(12)} \propto \beta_0 \alpha_s^2 (\mu) m_s^2 \Lambda^{-2}$$

$$u$$

$$y_{sd}^{(12)} \propto \alpha_s (\mu) m_s^2 \Lambda^{-2}$$

$$u$$

$$d=12$$
Guestimate: $x \sim y \sim 10^{-3}$?

Alexey Petrov (Wayne State Univ.)

Alexey Petrov (Wayne State Univ.)

Theoretical estimates II

B. Long distance physics dominates the dynamics...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_{n} \left[\left\langle D^{0} \left| H_{W}^{\Delta C=1} \right| n \right\rangle \left\langle n \left| H_{W}^{\Delta C=1} \right| \overline{D}^{0} \right\rangle + \left\langle \overline{D}^{0} \left| H_{W}^{\Delta C=1} \right| n \right\rangle \left\langle n \left| H_{W}^{\Delta C=1} \right| D^{0} \right\rangle \right]$$

... with n being all states to which D^0 and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

Donoghue et. al. Colangelo et. al.

$$y_{2} = Br\left(D^{0} \rightarrow K^{+}K^{-}\right) + Br\left(D^{0} \rightarrow \pi^{+}\pi^{-}\right)$$
$$- 2\cos \delta \sqrt{Br\left(D^{0} \rightarrow K^{+}\pi^{-}\right)}Br\left(D^{0} \rightarrow \pi^{+}K^{-}\right)$$

If every Br is known up to $O(1\%) \implies$ the result is expected to be O(1%)!

The result here is a series of large numbers with alternating signs, $\underline{SU(3)}$ forces 0

x = ? Extremely hard...

need to restructure the calculation...

Alexey Petrov (Wayne State Univ.)

cancellation

expected!

Alexey Petrov (Wayne State Univ.)

Theoretical expectations: SU(3) breaking

• Neglecting the third generation, mixing arises at second order in SU(3) breaking

$$x, y \sim \sin^2 \vartheta_C \varepsilon_{SU(3)}^2$$

• Known counter-example:

Does not work if there is a very narrow light quark resonance with $m_R \sim m_D$

$$x, y \sim \frac{g_{DR}^2}{m_D^2 - m_R^2} \sim \frac{g_{DR}^2}{m_D^2 - m_0^2 - 2m_0 \delta_R}$$

Most probably don't exists...

see E.Golowich and A.A.P. Phys.Lett. B427, 172, 1998

• What happens if part of the multiplet is kinematically forbidden?

Example: both $D^0 \rightarrow 4\pi$ and $D^0 \rightarrow 4K$ are from the same multiplet, but the latter is kinematically forbidden

Mixing is dominated by 4-body intermediate state contribution, incomplete cancellations naturally imply that $y \sim 1\%$

see A.F., Y.G., Z.L., and A.A.P. Phys.Rev. D65, 054034, 2002

Alexey Petrov (Wayne State Univ.)

FCNC in charm: why do we care?

Rare charm decays	Rare beauty decays
• intermediate down-type quarks	• intermediate up-type quarks
• SM: b-quark contribution is very small due to V _{ub}	• SM: t-quark contribution is dominant
• rate $\propto f(m_s) - f(m_d)$ (zero in the SU(3) limit)	• rate $\propto f(m_t^2)$ (expected to be large)
 Sensitive to long distance QCD Sensitive to New Physics! 	 Computable in QCD (*) Large in the SM: CKM!

(*) depending on the process: OPE, factorization, ...

Alexey Petrov (Wayne State Univ.)

FCNC charm decays

1. In many cases NP contribution "gives a larger contribution" than the Standard Model

2. Example: R SUSY

.. or MSSM for different values of squark masses

see Burdman, Golowich, Hewett and Pakvasa Phys.Rev. D66, 014009, 2002

5. Conclusions

Did not talk about:

- Lifetimes and inclusive semileptonic decays
 - applications of 1/m techniques
- Charmed baryons and double-charmed baryons
 - issues in double-charmed baryon production
- Exclusive nonleptonic charm decays
 - direct CP violation
- Charmonium production and polarization
 - J/ ψ production in e⁺e⁻ collisions

Conclusions

- > Spectroscopy: what are the new D_{sJ}^* states?
 - low mass triggers many possible explanations
- Leptonic and semileptonic decays
 - important inputs to B-physics/CKM extractions
- Charm mixing:
 - x, y = 0 in the SU(3) limit (as $V_{cb}^*V_{ub}$ is very small)
 - it is a second order effect
 - it is quite possible that $y \sim 1\%$ with x < y
 - expect new data from BaBar/Belle/CLEO/CLEO-c/CDF
- Observation of CP-violation or FCNC transitions in the current round of experiments are still "smoking gun" signals for New Physics

Additional Slides

Questions:

1. Can any model-independent statements be made for *x* or *y*?

What is the order of SU(3) breaking? i.e. if $x, y \propto m_s^n \underline{\text{what is } n}$?

2. Can one claim that $y \sim 1\%$ is natural?

Theoretical expectations

At which order in $SU(3)_F$ breaking does the effect occur? Group theory?

$$\left\langle D^{0} \mid H_{W} H_{W} \mid \overline{D}^{0} \right\rangle \Longrightarrow \left\langle 0 \mid D H_{W} H_{W} D \mid 0 \right\rangle$$

is a singlet with $D \rightarrow D_i$ that belongs to 3 of $SU(3)_F$ (one light quark)

The
$$\Delta C=1$$
 part of H_W is $(\overline{q}_i c)(\overline{q}_j q_k)$, *i.e.* $3 \times \overline{3} \times \overline{3} = \overline{15} + 6 + \overline{3} + \overline{3} \Rightarrow H_k^{ij}$
 $O_{\overline{15}} = (\overline{sd})(\overline{ud}) + (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) + s_1(\overline{uc})(\overline{dd})$
 $- s_1(\overline{sc})(\overline{us}) - s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) - s_1^2(\overline{uc})(\overline{ds})$
 $O_6 = (\overline{sd})(\overline{ud}) - (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) - s_1(\overline{uc})(\overline{dd})$
 $- s_1(\overline{sc})(\overline{us}) + s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) + s_1^2(\overline{uc})(\overline{ds})$

Introduce SU(3) breaking via the quark mass operator $M_{j}^{i} = diag (m_{u}, m_{d}, m_{s})$

All nonzero matrix elements built of D_i , H_k^{ij} , M_j^i must be SU(3) singlets

Alexey Petrov (Wayne State Univ.)

11

11

Theoretical expectations

Theoretical expectations: SU(3) breaking

- Two major sources of SU(3) breaking
 - 1. phase space

$$m_K \neq m_\pi \neq m_\eta \dots$$

2a. matrix elements (absolute value)

$$f_K \neq f_\pi \dots$$

2b. matrix elements (phases a.k.a. FSI)

$$\operatorname{Im} \frac{A(D^{0} \to K^{+}\pi^{-})}{A(\overline{D}^{0} \to K^{+}\pi^{-})} \neq 0$$

Take into account only the first source...

Alexey Petrov (Wayne State Univ.)

SU(3) and phase space

• "Repackage" the analysis: look at the <u>complete</u> multiplet contribution

$$y = \sum_{F_R} y_{F,R} Br\left(D^0 \to F_R\right) \sim \sum_{F_R} y_{F,R} \frac{1}{\Gamma} \sum_{n \in F_R} \Gamma\left(D^0 \to n\right)$$

y for each SU(3) multiplet
Each is **0** in SU(3)

• Does it help? If only phase space is taken into account: <u>no (mild)</u> model dependence

$$y_{F,R} = \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}{\sum_{n \in F_R} \langle D^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}$$

if CP is conserved
$$= \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}{\sum_{n \in F_R} \Gamma(D^0 \to n)}$$
Can consistently compute

Alexey Petrov (Wayne State Univ.)

Example: PP intermediate states

• n=PP transforms as $(8 \times 8)s = 27 + 8 + 1$, take 8 as an example:

Numerator:

$$A_{N,8} = |A_0|^2 s_1^2 \left[\frac{1}{2} \Phi(\eta, \eta) + \frac{1}{2} \Phi(\pi^0, \pi^0) + \frac{1}{3} \Phi(\eta, \pi^0) + \Phi(\pi^+, \pi^-) - \Phi(\overline{K^0}, \pi^0) + \Phi(K^+, \pi^-) - \Phi(\overline{K^0}, \pi^0) - \frac{1}{6} \Phi(\eta, \overline{K^0}) - \frac{1}{6} \Phi(\eta, \overline{K^0}) - \Phi(K^+, \pi^-) - \Phi(K^-, \pi^+) \right]$$

Denominator:

phase space function

$$A_{D,8} = |A_0|^2 \left[\frac{1}{6} \Phi\left(\eta, K^0\right) + \Phi\left(K^+, \pi^-\right) + \frac{1}{2} \Phi\left(K^0, \pi^0\right) + O\left(s_1^2\right) \right]$$

• This gives a calculable effect!

$$y_{2,8} = \frac{A_{N,8}}{A_{D,8}} = -0.038 \ s_1^2 = -1.8 \times 10^{-4}$$

Repeat for other states
Multiply by Br_{Fr} to get y

2

Results

Final state repr	esentation	$y_{F,R}/s_{1}^{2}$	$y_{F,R}$ (%)
PP	8	-0.0038	-0.018
	27	-0.00071	-0.0034
PV	8_S	0.031	0.15
	84	0.032	0.15
	10	0.020	0.10
	10	0.016	0.08
	27	0.040	0.19
(VV)s-wave	8	-0.081	-0.39
	27	-0.061	-0.30
(VV)p-wave	8	-0.10	-0.48
	27	-0.14	-0.70
(VV) _{d-wave}	8	0.51	2.5
2012 10 10 10 10 10 10 10 10 10 10 10 10 10	27	0.57	2.8

Final state represe	ntation	$y_{F,R}/s_1^2$	$y_{F,B}$ (%)
(3P)s-wave	8	-0.48	-2.3
	27	-0.11	-0.54
$(3P)_{p-wave}$	8	-1.13	-5.5
	27	-0.07	-0.36
(3P)form-factor	8	-0.44	-2.1
	27	-0.13	-0.64
4P	8	3.3	16
	27	2.2	9.2
	27'	1.9	11

- Product is naturally O(1%)
- No (symmetry-enforced) cancellations
- Does NOT occur for x

naturally implies that $y \sim 1\%$ and x < y !

Final state	fraction
PP	5%
PV	10%
$(VV)_{s-wave}$	5%
(VV) _{d-wave}	5%
3P	5%
4P	10%