

Review of $b \rightarrow s l^+ l^-$ and $B^0 \rightarrow l^+ l^-$ Decays

Akimasa Ishikawa (representing Belle) Nagoya University

> 石川 明正 名古屋大学

5 June 2003 Flavor Physics and CP Violation 2003 Ecole Polytechnique, Paris, France

$b \rightarrow s l^+ l^-$ Decays

- b→s l+ l-
 - Flavor-Changing Neutral Current decay
 - induced through Penguin diagrams or Box diagrams at lowest order
 - sensitive to new physics (SUSY, charged Higgs)
- compared to $b \rightarrow s \gamma$
 - Additional operators with q² dependence

 $(q^2 = M^2(\ell^+\ell^-))$

– rare : suppressed by additional α_{em}

Wilson Coefficients

BF described in term of Wilson Coefficients C_7^{eff} , C_9^{eff} and C_{10}^{eff} • $\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 \left| V_{ts}^* V_{tb} \right|^2}{32 \sigma^3} \left| C_7^{\text{eff}} \right|^2 \qquad (+1/m_{b,c} \text{ corrections})$ C_7^{eff} can be measured with two fold ambiguity $C_7^{eff} = -0.313 \text{ (theory)}$ $-0.37 < C_7^{eff} < -0.17$ or $0.21 < C_7^{eff} < 0.43$ (exp) $BF(B \to X_S \gamma)_{exp} = (3.40^{+0.42}_{-0.37}) \times 10^{-6}$ Lunghi hep-ph/0210379 • $\frac{d\Gamma(b \to s\ell^+\ell^-)}{d\hat{s}} = \left(\frac{\alpha_{em}}{\Lambda_{\pi}}\right)^2 \frac{G_F^2 m_b^5 \left|V_{ts}^* V_{tb}\right|^2}{\Lambda_{\Phi}^3 - 3} (1 - \hat{s})^2$ $\times \left[(1+2\hat{s}) \left(\left| C_{9}^{\text{eff}} \right|^{2} + \left| C_{10}^{\text{eff}} \right|^{2} \right) + 4 \left(1 + \frac{2}{\hat{s}} \right) \left| C_{7}^{\text{eff}} \right|^{2} + 12 \operatorname{Re} \left(C_{7}^{\text{eff}} C_{9}^{\text{eff}*} \right) \right]$

 C_7^{eff} , C_9^{eff} and C_{10}^{eff} can be measured from BF(b \rightarrow s I⁺ I⁻) and A_{FB} (b \rightarrow s I⁺ I⁻)

New Physics changes the Wilson Coefficients.

5 Jun 2003

Predictions

- Exclusive decays (large theoretical uncertainty, typically ~30%) $BF(B \rightarrow K\ell^+\ell^-) = (0.3 \sim 0.6) \times 10^{-6}$

 $BF(B \to K^* \ell^+ \ell^-) = (1.1 \sim 2.1) \times 10^{-6}$

- Inclusive decays (theoretically clean , typically ~15%) $BF(b \rightarrow s\ell^+\ell^-) = (3.5 \sim 7.9) \times 10^{-6}$
- Forward-Backward Asymmetry
 - $\quad \mathsf{B} \xrightarrow{} \mathsf{K} \mathsf{I}^+ \mathsf{I}^-$

− $B \rightarrow K^* I^+ I^-$, $b \rightarrow s I^+ I^-$

Large ! theoritically clean !! New physics modify the shape

Ali et al. Phys.Rev. D61 (2000) 074024

$B \rightarrow K^{(*)} l^+ l^-$ Analysis

- Tight lepton ID
- J/ψ and ψ ' veto

- e⁺ e⁻ B factories (Belle, Babar, CLEO)
 - continuum suppressed by event shape
 - BB background suppressed by E_{miss} , $\cos\theta_{B}$
 - Signal is selected from ΔE and $M_{\rm hc}$

CDF

- background suppression track isolation impact parameter vertex quality
- Signal is selected from $M_{\rm P}$

FPCP 2003 Ecole Polytechnique, Parin Frage (c)

5 Jun 2003

Babar 78 fb⁻¹ ICHEP2002 preliminary

• K I⁺ I⁻ is clear

Excess in K* I+ I but not significant (2.8σ)

BF of B \rightarrow K^(*) l⁺ l⁻

- $B \rightarrow K ||$ is established.
 - experimental error is already comparable to theoretical error.
- $B \rightarrow K^* | |$
 - No significant signals yet

BF or UL (10 ⁻⁶)	K + -	K* I+ I-	
Belle (60 fb ⁻¹)	$0.58 \ _{-0.15}^{+0.17} \pm 0.06$	< 1.4	
Prelim.		(ave. of ee and $\mu\mu$)	
Babar (78 fb ⁻¹)	$0.78 \begin{array}{c} +0.24 & +0.11 \\ -0.20 & -0.18 \end{array}$.	< 3.0	
Prelim.		(scaled to ee)	
CLEO (9 fb ⁻¹)	< 1.7	< 3.3	
CDF (88 pb ⁻¹)	< 5.2	< 4.0	

$B \rightarrow X_S l^+ l^-$ Analysis

Belle and CLEO study this decay mode.

Belle

reconstructed from dilepton, 1 kaon and 0 to 4 pions (at most 1 π^0).

Inclusive analysis is basically same as exclusive one.

- Tight lepton ID
- Tight J/ ψ and ψ ' veto
- converted γ and π^0 Dalitz decay veto M_{II} > 0.2 GeV/c²
- continuum suppressed by event shape
- BB background suppressed by E_{miss} , M_{miss}
- Best candidate selected from ΔE , $\cos \theta_{B}$
- M_{Xs} < 2.1 GeV/c²
- signal yield determined by fit to M_{bc}

$B \rightarrow X_S l^+ l^-$ Results (Belle)

M_{II} and M_{Xs} in $B \rightarrow X_S l^+ l^-$ (Belle)

- clear signal in $M_{Xs} > M_{K^*}$
- large K and small K* are consistent with exclusive analysis
- dilepton invariant mass distribution is consistent with prediction, so far.

BF of B \rightarrow X_S l⁺ l⁻

- First measurement by Belle (PRL 90, 021801 (2003))
 - Electron mode and muon mode are consistent within an error
 - systematic error (~20%) is already comparable to statistical error Largest one is uncertainty in exclusive farction (~11% error) (can be reduced by using measured BF.)
 Second largest one is track finding (~8% error → ~4% error)

BF or UL (10 ⁻⁶)	X _s ee	Χ _s μ μ	X _s II
Belle (60 fb ⁻¹) (M _{II} >0.2 GeV/c ²)	$5.0\pm2.3^{+1.3}_{-1.1}$.	$7.9 \pm 2.1 {}^{+2.1}_{-1.5}$.	$6.1 \pm 1.4 \ ^{+1.4}_{-1.1}.$
CLEO (3 fb ⁻¹)	< 57	< 58	< 42

$b \rightarrow s l^+ l^-$ Comparison

- XsII
 - Consistent with prediction
- K* I I
 - Just above the predictions
- KII
 - Belle, Babar combined BF is
 (0.63 ^{+0.17}_{-0.15}) x 10⁻⁶
 - Consistent with predictions, so far
 - Error is already comparable to theoretical error.

Constraint on C₉ and C₁₀

- C_9 and C_{10} can be constrained from BF(B \rightarrow Xs I I)
 - $C_i^{NP} = C_i C_i^{SM}$
 - (0,0) if the SM holds. Dot shows Extended-MFV.
 - Strong constraint on C_9 and C_{10} but sgn(C_7) is not determined yet.

$B^0 \rightarrow l^+ l^-$ Decays

$\mathsf{B} \xrightarrow{} \mathsf{I}^+ \mathsf{I}^-$

- induced through box or penguin annihilation diagrams at lowest order
- very small BF (FCNC decays, helicity suppression)

 $BF(B \to e^+e^-) \sim 10^{-15}$ $BF(B \to \mu^+\mu^-) \sim 10^{-10}$

- new physics(2HDM, Z-FCNC) enhances the BF by 2 to 3 order of magnitude larger
- Pati-Salam LQ can be searched with LFV decay B \rightarrow e μ

$B^0 \rightarrow l^+l^-$ Analysis

Belle (New !)

continuum background suppressed by

LR (event shape, $F(E_{\text{miss}}, M_{\text{miss}}))$

background estimated from data and MC

Babar

- multiplicity and track polar angle cut to reduce QED background.
- continuum background suppressed by event shape
- no background subtraction for UL calculation

CDF

- track isolation
- vertex quality and vertex displacement from IP

$B^0 \rightarrow l^+ l^-$ (Belle, Babar)

5 Jun 2003

limit on BF($B^0 \rightarrow l^+ l^-$) and M_{LQ}

18

UL (10 ⁻⁸)	e e	μμ	eμ	$M_{LQ}(TeV/c^2)$
Belle (78 fb ⁻¹) prelim.	< 20	< 8.3	< 9.1	> 54
Babar (54 fb ⁻¹) prelim.	< 33	< 20	< 21	
CLEO (3 fb ⁻¹)	< 830	< 61	< 150	> 27
CDF (102, 110 pb ⁻¹)		< 86	< 350	> 22

Summary

B factories study FCNC decays extensively .

- $B \rightarrow K I^+ I^-$
 - First observed by Belle. Recently confirmed by Babar
 - BF is consistent with theoretical predictions
- B → K* I+ I-
 - Signal is not significant
 - UL is just above theoretical predictions
- $B \rightarrow X_S |_{^+} |_{^-}$
 - First measured by Belle
 - BF consistent with theoretical predictions
 - Stringent limit on C₉ and C₁₀
- $B \rightarrow |+|^-$
 - Most stringent limits by Belle
 - Limit on Pati-Salam leptoquark mass > 54 TeV/c²

5 Jun 2003

Future Prospects

• This summer (LP2003 at Fermilab, USA)

Belle and Babar will accumulate more than 130 fb⁻¹ data

stat. error of BF(B \rightarrow K I I) reduced by $\sqrt{2}$ (~20%)

observation of K* I I ? (if the BF is ~ 1.4×10^{-6})

CDF and D0 can also contribute to these topics.

• 2005 (LP2005 at Uppsala Universitet, Sweden)

Belle and Babar ~400 fb⁻¹ data

CDF and D0 ~3 fb⁻¹?? data

precise BF (~10% error) and q² distribution in B \rightarrow K I I

BF, q^2 and F_{AB} in K* II and X_s II

new physics effects can be seen ?!

Back Up Slides

Systematics in BF(B \rightarrow X_S l⁺ l⁻)

- Model
 - Exclusive fraction (~11%) (can be reduced !) change the exclusive BFs
 - Fragmentation (~5%) compare inclusive production of π⁰, Ks, η and φ btw continuum data and JETSET
 - X_S mass distribution (~4%) change p_F and m_a
 - Fraction of unmeasured mode (~2%)
- Reconstruction efficiency
 - Tracking (~8%) (can be reduced !)
 - Lepton ID (~3%) (can be reduced !)
 - Background suppression (~3%)
 - Ks (~2%) (can be reduced !)
 - π^0 (~2%) (can be reduced !)
 - Kaon ID (~2%) (can be reduced !)
 - Pion ID (~0.6%)
- Signal extraction
 - Signal and background PDF (+14–10%) (can be reduced !)