CP Violation & New Physics in B_s Decays

Robert Fleischer CERN, Theory Division

FPCP 2003, Paris, 3–6 June 2003

- Setting the Stage
- $B_s \to J/\psi\phi$:
 - B_s counterpart of $B_d \to J/\psi K_S \Rightarrow \phi_s$
 - Sensitive to new-physics effects in $B_s^0 \overline{B_s^0}$ mixing.

• $B_s \to K^+ K^-$:

- Complements $B_d \to \pi^+ \pi^- \Rightarrow \gamma$
- Sensitive to new-physics effects in the penguin sector.
- $B_s \to D_s^{(*)\pm} K^{\mp}$:
 - Complements nicely $B_d \to D^{(*)\pm} \pi^{\mp} \Rightarrow \gamma$
 - Tree decays, i.e. small sensitivity on new-physics effects.
- <u>Conclusions and Outlook</u>

Setting the Stage

Basic Features

- At the $e^+e^- B$ factories operating at the $\Upsilon(4S)$ resonance, no B_s mesons are accessible!
- Plenty of B_s mesons will be produced at hadron colliders:

 \Rightarrow "El Dorado" for *B* studies @ Tevatron-II and LHC!

• Mass difference ΔM_s :

[Kronfeld & Ryan; see talk by Becirevic]

- Decay width difference $\Delta \Gamma_s$:
 - $\Delta\Gamma_s/\Gamma_s = \mathcal{O}(-10\%)$, while $\Delta\Gamma_d/\Gamma_d$ is negligible!
 - Interesting studies with "untagged" B_s -decay rates:

$$\langle \Gamma(B_q(t) \to f) \rangle \equiv \Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to f).$$

[Dunietz (1995); R.F. & Dunietz (1996-97)]

Our Focus: CP Violation

• Time-dependent CP asymmetry for $(\mathcal{CP})|f\rangle = \pm |f\rangle$:

$$\frac{\Gamma(B_q^0(t) \to f) - \Gamma(\overline{B_q^0}(t) \to f)}{\Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0}(t) \to f)} = \left[\frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos(\Delta M_q t) + \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta\Gamma} \sinh(\Delta \Gamma_q t/2)}\right]$$

Observables:

• $\Delta \Gamma_s \text{ provides } \mathcal{A}_{\Delta \Gamma}$: $\left[\mathcal{A}_{CP}^{dir}\right]^2 + \left[\mathcal{A}_{CP}^{mix}\right]^2 + \left[\mathcal{A}_{\Delta \Gamma}\right]^2 = 1$ $\langle \Gamma(B_q(t) \to f) \rangle \propto \left[\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma} \sinh(\Delta \Gamma_q t/2) \right] e^{-\Gamma_q t}$ $\Rightarrow \mathcal{A}_{\Delta \Gamma} \text{ from untagged measurements!}$

Impact of New Physics

$$B^0_q - \overline{B^0_q}$$
 Mixing

- Highly CKM suppressed, loop-induced, fourth order weak interaction process in the SM!
- Simple dimensional arguments suggest that new physics in the TeV regime may well manifest itself as follows:
 - * $\Delta M_q \rightarrow \text{impact on } R_t$, if different NP in $\Delta M_{d,s}$.

*
$$\phi_q \rightarrow$$
 Impact on CP Violation!

[Nir & Silverman; Grossman, Nir & Worah; R.F. & Mannel; ...]

• $\underline{\sin \phi_d \sim 0.734}$: $\Rightarrow \phi_d \sim \underbrace{47^{\circ}(a)}_{SM} \lor \underbrace{133^{\circ}(b)}_{NP!?}$

– Analysis of CP violation in $B_d \rightarrow \pi^+\pi^-$ suggests:

- Interestingly, $B \to \pi K$, $B \to \pi \pi$ branching ratios seem to favour $\gamma \ge 90^{\circ}$, as well as $K^+ \to \pi^+ \nu \overline{\nu}...$

[R.F., Isidori & Matias, hep-ph/0302229, to appear in *JHEP*]

Burning Question:

Is ϕ_s Sizeable?

... B_s -meson counterpart of $B_d o J/\psi\,K_{
m S}$

- Amplitude structure: $A(B_s \to J/\psi \phi) \propto \left[1 + \lambda^2 a e^{i\vartheta} e^{i\gamma}\right]$

- Plausible assumption: $[\overline{\lambda} : \text{generic "expansion" parameter}]$ $ae^{i\vartheta} = \frac{\text{"Penguin"}}{\text{"Tree"}} = \mathcal{O}(0.2) = \mathcal{O}(\overline{\lambda}) \equiv \mathcal{O}(\lambda).$

Final state is admixture of different CP eigenstates ...

- Angular distribution of $J/\psi[\rightarrow \ell^+\ell^-]\phi[\rightarrow K^+K^-]$: \Rightarrow
 - Direct CP-violating effects: $0 + O(\overline{\lambda}^3)$
 - Mixing-induced CP-violating effects:

$$\sin \phi_s + \mathcal{O}(\overline{\lambda}^3) = \sin \phi_s + \mathcal{O}(10^{-3})$$

[Dighe, Dunietz & R.F. (1999)]

• Standard Model: $\phi_s = -2\lambda^2 \eta = \mathcal{O}(10^{-2}) \Rightarrow$

Hadronic uncertainties of O(10%)!

[In contrast to the
$$B_d \to J/\psi K_{\rm S}$$
 case!]

– Can be controlled through $B_d \rightarrow J/\psi \rho^0$ [R.F. (1999)]

• Another interesting aspect:

- $B_s \to J/\psi[\to \ell^+ \ell^-]\phi[\to K^+ K^-]$ angular distribution:

$$\Rightarrow \cos \delta_f \cos \phi_s$$

* Fixing the sign of $\cos \delta_f$ through factorization:

 \Rightarrow sgn $(\cos \phi_s) \Rightarrow$ unambiguous value of $\phi_s!$

- Important question, also if $\sin \phi_s \approx 0$ should be found... [Dunietz, R.F. & Nierste, *Phys. Rev.* **D63** (2001) 114015]
- Also recently addressed with $B_s \rightarrow D_{\pm} \eta^{(')}$, $D_{\pm} \phi$, ... [R.F., hep-ph/0301255, to appear in *Phys. Lett.* **B**, see below]
- Big Hope:

Experiments will find sizeable value of $\sin\phi_s$

... immediate signal for NP because of tiny SM "background"!

- Specific recent NP analyses with large impact on $\sin\phi_s$:
 - * SUSY: Ciuchini et al., Phys. Rev. D67 (2003) 075016
 - * Left-right symmetric model: Silverman et al., hep-ph/0305013
 - * ...

$$B_s \to K^+ K^-$$

- Dominated by QCD penguin processes!
- Complements nicely $B_d \to \pi^+ \pi^-$:

$$U$$
-spin symmetry \Rightarrow γ [R.F. ('99)]

- Other U-spin strategies to extract γ :
 - $B_{s(d)} \to J/\psi K; \ B_{d(s)} \to D^+_{d(s)} D^-_{d(s)} \ [\text{R.F. ('99)}]$
 - $B_{(s)}
 ightarrow \pi K$ [Gronau & Rosner (2000)]
 - $B_{s(d)}
 ightarrow J/\psi\eta$ [Skands (2000)]

Amplitudes & Observables

• Structure of decay amplitudes:

$$A(B_d^0 \to \pi^+ \pi^-) \propto \left[e^{i\gamma} - de^{i\theta} \right]$$
$$A(B_s^0 \to K^+ K^-) \propto \left[e^{i\gamma} + \left(\frac{1 - \lambda^2}{\lambda^2} \right) d' e^{i\theta'} \right]$$

$$de^{i\theta} = \left. \frac{\text{``Pen''}}{\text{``Tree''}} \right|_{B_d \to \pi^+ \pi^-}, \ d'e^{i\theta'} = \left. \frac{\text{``Pen''}}{\text{``Tree''}} \right|_{B_s \to K^+ K^-}$$

• CP-violating observables:

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) = {\rm function}(d, \theta, \gamma)$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+ \pi^-) = {\rm function}(d, \theta, \gamma, \phi_d)$$
$$\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-) = {\rm function}(d', \theta', \gamma)$$

$$\mathcal{A}_{CP}^{\min}(B_s \to K^+ K^-) = \text{function}(d', \theta', \gamma, \phi_s)$$

Extracting γ **& Strong Parameters**

• As we have seen, ϕ_d and ϕ_s can "straightforwardly" be fixed, also if NP should contribute to $B_q^0 - \overline{B_q^0}$ mixing:

$$- \mathcal{A}_{CP}^{dir}(B_d \to \pi^+ \pi^-) \& \mathcal{A}_{CP}^{mix}(B_d \to \pi^+ \pi^-):$$

$$\Rightarrow d = d(\gamma), \text{ in a theoretically clean way!}$$

$$- \mathcal{A}_{CP}^{dir}(B_s \to K^+ K^-) \& \mathcal{A}_{CP}^{mix}(B_s \to K^+ K^-):$$

$$\Rightarrow d' = d'(\gamma), \text{ in a theoretically clean way!}$$

 $\bullet \ \underline{U}\text{-spin symmetry} \ \Rightarrow \ d=d', \ \theta=\theta'$

$$- \ d = d' \ \Rightarrow$$
 extraction of γ , d , θ , θ'

- $\theta = \theta'$ provides interesting *U*-spin check!

[R.F., Phys. Lett. B459 (1999) 306]

• Experimental accuracy of $\mathcal{O}(10^{\circ})$ and $\mathcal{O}(1^{\circ})$ for γ may be achieved at Tevatron-II and LHCb/BTeV, respectively:

 \Rightarrow very promising!

Report of *B*-Decay Working Group, LHC Workshop, hep-ph/0003238; *B* Physics at the Tevatron: Run II and beyond, hep-ph/0201071

Waiting for $B_s \to K^+ K^- \dots$

• $BR(B_s \to K^+K^-) \approx BR(B_d \to \pi^{\mp}K^{\pm})$: \Rightarrow estimate for

$$H = \left(\frac{1-\lambda^2}{\lambda^2}\right) \left[\frac{\mathsf{BR}(B_d \to \pi^+ \pi^-)}{\mathsf{BR}(B_s \to K^+ K^-)}\right] \sim 7.5$$

- Using d = d' and $\theta = \theta'$: \Rightarrow $H = function(d, \theta, \gamma) \Rightarrow$
 - γ , d, θ from CP violation in $B_d \rightarrow \pi^+ \pi^-!$ [see above]
 - Allowed region in $B_s \to K^+ K^-$ observable space:

> Very narrow target range for CDF-II & LHCb!

[R.F. & J. Matias, Phys. Rev. D66 (2002) 054009]

• Already the measurement of $BR(B_s \rightarrow K^+K^-)$ by CDF-II will be an important and exciting achievement...

 $(*)^{\pm} k$ $B_s \to L$

- Pure "tree" decays!
- Complement nicely $B_d \to D^{(*)\pm}\pi^{\mp}, \dots$:
 - Same theoretical basis!
 - New strategies...

. . .

R.F., hep-ph/0304027

• History & alternative strategies:

Aleksan, Dunietz & Kayser, Z. Phys. C54 (1992) 653
R.F. & Dunietz, Phys. Lett. B387 (1996) 361
Dunietz, Phys. Lett. B427 (1998) 179
London, Sinha & Sinha, Phys. Rev. Lett. 85 (2000) 1807
Diehl & Hiller, Phys. Lett. B517 (2001) 125
Suprun, Chiang & Rosner, Phys. Rev. D65 (2002) 054025
Gronau, Pirjol & Wyler, Phys. Rev. Lett. 90 (2003) 051801

Basic Features

- Distinguish between the following cases:
 - $\underline{q = s}: D_s \in \{D_s^+, D_s^{*+}, \ldots\}, u_s \in \{K^+, K^{*+}, \ldots\}:$

 \rightarrow hadronic parameter $x_s e^{i\delta_s} \propto R_b \Rightarrow \underline{large}$ effects!

- $\underline{q} = d$: $D_d \in \{D^+, D^{*+}, \ldots\}, u_d \in \{\pi^+, \rho^+, \ldots\}$:

 \rightarrow hadronic parameter $x_d e^{i\delta_d} \propto -\lambda^2 R_b \Rightarrow \underline{tiny}$ effects!

[For simplicity, we require that at least one of the D_q , \overline{u}_q states is a pseudoscalar meson. Otherwise, an angular analysis is needed!]

Conventional Extraction of $\phi_q + \gamma$

• Observables provided by $\cos(\Delta M_q t)$ terms:

$$\begin{cases} C(B_q \to D_q \overline{u}_q) \equiv C_q \\ C(B_q \to \overline{D}_q u_q) \equiv \overline{C}_q \end{cases} \} \Rightarrow \langle C_q \rangle_{\pm} \equiv \frac{\overline{C}_q \pm C_q}{2} :$$

$$\langle C_q \rangle_- = (1 - x_q^2)/(1 + x_q^2) \Rightarrow x_q \text{ from } \mathcal{O}(x_q^2) \text{ terms!}$$

$$- q = s: x_s = \mathcal{O}(R_b) \approx 0.4 \Rightarrow x_s^2 = \mathcal{O}(0.16)$$
$$- q = d: x_d = \mathcal{O}(-\lambda^2 R_b) \approx -0.02 \Rightarrow x_d^2 = \mathcal{O}(0.0004) \parallel \parallel$$

• Observables provided by $\sin(\Delta M_q t)$ terms:

$$\begin{cases} S(B_q \to D_q \overline{u}_q) \equiv S_q \\ S(B_q \to \overline{D}_q u_q) \equiv \overline{S}_q \end{cases} \} \Rightarrow \langle S_q \rangle_{\pm} \equiv \frac{\overline{S}_q \pm S_q}{2} :$$

$$s_{+} \equiv (-1)^{L} \left[\frac{1 + x_{q}^{2}}{2 x_{q}} \right] \langle S_{q} \rangle_{+} = +\cos \delta_{q} \sin(\phi_{q} + \gamma)$$
$$s_{-} \equiv (-1)^{L} \left[\frac{1 + x_{q}^{2}}{2 x_{q}} \right] \langle S_{q} \rangle_{-} = -\sin \delta_{q} \cos(\phi_{q} + \gamma)$$

[Note the $(-1)^L$ factors, where L is the $D_q \overline{u}_q$ angular momentum!]

$$\sin^2(\phi_q + \gamma) = \frac{1}{2} \left[(1 + s_+^2 - s_-^2) \pm \sqrt{(1 + s_+^2 - s_-^2)^2 - 4s_+^2} \right]$$

$$\Rightarrow \qquad \mathsf{Eightfold solution for } \phi_q + \gamma!$$

 $[\operatorname{sgn}(\cos\delta_q)>0,$ as suggested by factorization \Rightarrow fourfold solution]

Closer Look at "Untagged" Rates

- New strategy employing $\Delta \Gamma_s$:
 - If the width difference $\Delta\Gamma_s$ is sizeable, time-dependent untagged rates provide observables $\overline{\mathcal{A}}_{\Delta\Gamma_s}$ and $\mathcal{A}_{\Delta\Gamma_s}$:

$$\Rightarrow \tan(\phi_s + \gamma) = -\left[\frac{\langle S_s \rangle_+}{\langle A_{\Delta \Gamma_s} \rangle_+}\right] = +\left[\frac{\langle A_{\Delta \Gamma_s} \rangle_-}{\langle S_s \rangle_-}\right]$$

... essentially unambiguous value of $\phi_s + \gamma$, i.e. of γ !

- Because of $\langle S_s \rangle_{\pm} \propto x_s$ and $\langle A_{\Delta\Gamma_s} \rangle_{\pm} \propto x_s$, we have not to rely on $\mathcal{O}(x_s^2)$ terms, but need sizeable $\Delta\Gamma_s$...
- Untagged rates are also very useful in the case of small $\Delta \Gamma_q$:

Extraction of "unevolved" untagged rates

... various strategies to determine x_q from the ratio of

$$\langle \Gamma(B_q \to D_q \overline{u}_q) \rangle + \langle \Gamma(B_q \to \overline{D}_q u_q) \rangle$$

and CP-averaged rates of B^{\pm} or flavour-specific B_q decays:

$$- B_d^0 \to D^{(*)+} \pi^-: B^+ \to D^{(*)+} \pi^0 \text{ or } B_d^0 \to D_s^+ \pi^-$$
$$- B_s^0 \to D_s^{(*)+} K^-: B^+ \to D_s^{(*)+} \pi^0 \text{ or } B_s^0 \to D_s^{(*)-} \pi^+$$

Bounds on $\phi_q + \gamma$

• Keeping δ_q and x_q as "unknown", free parameters yields

$$|\sin(\phi_q + \gamma)| \ge |\langle S_q \rangle_+|, \quad |\cos(\phi_q + \gamma)| \ge |\langle S_q \rangle_-| \tag{1}$$

• If x_q has been measured, stronger constraints arise from

$$|\sin(\phi_q + \gamma)| \ge |s_+|, \quad |\cos(\phi_q + \gamma)| \ge |s_-| \tag{2}$$

- Once s_+ and s_- are known, we may of course determine $\phi_q + \gamma$ through the "conventional" approach...
- However, the bounds in (2) provide essentially the same information and are much simpler to implement:

$$\gamma=60^\circ$$
, $\phi_d=47^\circ$, $\phi_s=0^\circ$, $x_d=-0.02$, $x_s=0.4$ $ightarrow$

$$- \underline{\delta_d = \delta_s = 0^\circ}:$$

$$* B_d: 26^\circ \le \gamma \le 60^\circ \qquad [\gamma|_{\text{conv.}} = 26^\circ \lor 43^\circ \lor 60^\circ]$$

$$* B_s: 60^\circ \le \gamma \le 120^\circ \qquad [\gamma|_{\text{conv.}} = 60^\circ \lor 90^\circ \lor 120^\circ]$$

$$\Rightarrow \text{ overlap of } \gamma = 60^\circ!$$

$$- \frac{\delta_d = \delta_s = 40^{\circ}:}{* B_d: (0^{\circ} \le \gamma \le 32^{\circ}) \lor (54^{\circ} \le \gamma \le 86^{\circ})}$$
$$[\gamma|_{\text{conv.}} = 3^{\circ} \lor 26^{\circ} \lor 60^{\circ} \lor 83^{\circ}]$$
$$* B_s: (42^{\circ} \le \gamma \le 71^{\circ}) \lor (109^{\circ} \le \gamma \le 138^{\circ})$$
$$[\gamma|_{\text{conv.}} = 50^{\circ} \lor 60^{\circ} \lor 120^{\circ} \lor 130^{\circ}]$$
$$\Rightarrow \text{ overlap of } 54^{\circ} \le \gamma \le 71^{\circ}!$$

Combined Analysis of $B_{s,d} o D_{s,d} \overline{u}_{s,d}$ Modes

• $B_s^0 \to D_s^{(*)+} K^-$, $B_d^0 \to D^{(*)+} \pi^-$ related through $s \leftrightarrow d$:

$$\underbrace{U\text{-spin symmetry}}_{a_s = \frac{x_s}{R_b}, \quad a_d = -\left(\frac{1-\lambda^2}{\lambda^2}\right)\frac{x_d}{R_b} \rightarrow \left|\frac{\text{Hadr. ME}}{\text{Hadr. ME}}\right|$$

- Various possibilities to implement these relations:
 - For example, assume that $a_s = a_d$ and $\delta_s = \delta_d$:

$$\tan \gamma = -\left[\frac{\sin \phi_d - S \sin \phi_s}{\cos \phi_d - S \cos \phi_s}\right]$$

$$S = -R\left[\frac{\langle S_d \rangle_+}{\langle S_s \rangle_+}\right] \quad \text{with} \quad R = \left(\frac{1-\lambda^2}{\lambda^2}\right) \left[\frac{1}{1+x_s^2}\right]$$

$$R = \left(\frac{f_K}{f_\pi}\right)^2 \left[\frac{\Gamma(\overline{B_s^0} \to D_s^{(*)+}\pi^-) + \Gamma(B_s^0 \to D_s^{(*)-}\pi^+)}{\langle \Gamma(B_s \to D_s^{(*)+}K^-) \rangle + \langle \Gamma(B_s \to D_s^{(*)-}K^+) \rangle}\right]$$

- Alternatively, we may *only* assume that $\delta_s = \delta_d$ or $a_s = a_d$...

- Important advantages, apart from features related to ambiguities:
 - x_d has *not* to be fixed, and x_s may *only* enter through $1 + x_s^2$ correction, determined from *untagged* B_s rates!
 - Measurement of x_s/x_d would *only* be interesting for the inclusion of U-spin-breaking effects in a_s/a_d !

Colour-Suppressed $B_q \rightarrow D^0 f_r, \overline{D^0} f_r$ Modes

•
$$B_d \to DK_{S(L)}, B_s \to D\eta^{(\prime)}, D\phi, \ldots; x_{fs}e^{i\delta_{fs}} \propto R_b$$

CP eigenstates D_{\pm} : \Rightarrow additional interference effects:

$$\Gamma_{+-}^{f_s} \equiv \frac{\langle \Gamma(B_q \to D_+ f_s) \rangle - \langle \Gamma(B_q \to D_- f_s) \rangle}{\langle \Gamma(B_q \to D_+ f_s) \rangle + \langle \Gamma(B_q \to D_- f_s) \rangle}$$

$$\Rightarrow \qquad |\cos\gamma| \ge |\Gamma_{+-}^{f_s}|$$

 $\langle S_{f_s} \rangle_{\pm} \equiv \frac{S^{f_s}_{\pm} \pm S^{f_s}_{-}}{2} \quad \text{with} \quad S^{f_s}_{\pm} \equiv \mathcal{A}_{CP}^{\min}(B_q \to D_{\pm}f_s) \quad \Rightarrow$

$$\tan\gamma\cos\phi_q = \left[\frac{\eta_{f_s}\langle S_{f_s}\rangle_+}{\Gamma_{+-}^{f_s}}\right] + \left[\eta_{f_s}\langle S_{f_s}\rangle_- - \sin\phi_q\right]$$

 $[\eta_{fs} \equiv (-1)^L \eta_{\rm CP}^{fs}$, where L is angular momentum of $Df_s]$

• $B_s \to D_{\pm} K_{\mathrm{S(L)}}, B_d \to D_{\pm} \pi^0, D_{\pm} \rho^0, \ldots$: $x_{f_d} e^{i\delta f_d} \propto -\lambda^2 R_b$

$$\eta_{f_d} \langle S_{f_d} \rangle_{-} = \sin \phi_q + \mathcal{O}(x_{f_d}^2) = \sin \phi_q + \mathcal{O}(4 \times 10^{-4})$$

... theoretical accuracy is one order of magnitude better than in $B_s \to J/\psi \phi$, i.e. $\phi_s^{\rm SM}$ with $\mathcal{O}(1\%)$ uncertainty!

[R.F., hep-ph/0301255 (\rightarrow PLB) & hep-ph/0301256 (\rightarrow NPB)]

Conclusions and Outlook

- Will $B_s \rightarrow \psi \phi$ show sizeable mixing-induced CP-violating effects, thereby indicating NP effects in $B_s^0 \overline{B_s^0}$ mixing?
- B_s decays offer interesting avenues to extract γ , e.g.,:

$$- \underline{B_s \to K^+ K^-} \& B_d \to \pi^+ \pi^-:$$

* Governed by QCD penguin processes!

$$- B_s \to D_s^{(*)\pm} K^{\mp} \& B_d \to D^{(*)\pm} \pi^{\mp}:$$

* Pure "tree" decays!

Will discrepancies show up?

... could indicate NP effects in the penguin sector!

- B_s decays are the "El Dorado" for *B*-physics studies at <u>hadron colliders:</u>
 - Important first steps at run II of the Tevatron.
 - Physics potential can be fully exploited by LHCb & BTeV.