CP Violation \& New Physics in B_{s} Decays

Robert Fleischer
CERN, Theory Division
FPCP 2003, Paris, 3-6 June 2003

- Setting the Stage
- $\underline{B_{s} \rightarrow J / \psi \phi:}$
- B_{s} counterpart of $B_{d} \rightarrow J / \psi K_{\mathrm{S}} \Rightarrow \phi_{s}$
- Sensitive to new-physics effects in $B_{s}^{0}-\overline{B_{s}^{0}}$ mixing.
- $\underline{B}_{s} \rightarrow K^{+} K^{-}:$
- Complements $B_{d} \rightarrow \pi^{+} \pi^{-} \Rightarrow \gamma$
- Sensitive to new-physics effects in the penguin sector.
- $\underline{B}_{s} \rightarrow D_{s}^{(*) \pm} K^{\mp}:$
- Complements nicely $B_{d} \rightarrow D^{(*) \pm} \pi^{\mp} \Rightarrow \gamma$
- Tree decays, i.e. small sensitivity on new-physics effects.
- Conclusions and Outlook
Setting the Stage
- At the $e^{+} e^{-} B$ factories operating at the $\Upsilon(4 S)$ resonance, no B_{s} mesons are accessible!
- Plenty of B_{s} mesons will be produced at hadron colliders:
\Rightarrow "El Dorado" for B studies © Tevatron-II and LHC!
- Mass difference ΔM_{s} :
$-\Delta M_{s} / \Delta M_{d} \Rightarrow R_{t}$ from $\xi \equiv \sqrt{\hat{B}_{B_{s}}} f_{B_{s}} /\left(\sqrt{\hat{B}_{B_{d}}} f_{B_{d}}\right)$:

$-\left.\Delta M_{s}\right|_{\exp }>14.4 \mathrm{ps}^{-1} \Rightarrow \gamma \lesssim 90^{\circ}$!
- Controversy concerning theoretical uncertainties of $\xi \ldots$
[Kronfeld \& Ryan; see talk by Becirevic]
- Decay width difference $\Delta \Gamma_{s}$:
- $\Delta \Gamma_{s} / \Gamma_{s}=\mathcal{O}(-10 \%)$, while $\Delta \Gamma_{d} / \Gamma_{d}$ is negligible!
- Interesting studies with "untagged" B_{s}-decay rates:

$$
\left\langle\Gamma\left(B_{q}(t) \rightarrow f\right)\right\rangle \equiv \Gamma\left(B_{q}^{0}(t) \rightarrow f\right)+\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow f\right)
$$

[Dunietz (1995); R.F. \& Dunietz (1996-97)]

Our Focus: CP Violation

- Time-dependent CP asymmetry for $(\mathcal{C P})|f\rangle= \pm|f\rangle$:

$$
\begin{aligned}
& \frac{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)-\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow f\right)}{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)+\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow f\right)} \\
& \quad=\left[\frac{\mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}} \cos \left(\Delta M_{q} t\right)+\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}} \sin \left(\Delta M_{q} t\right)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)-\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{q} t / 2\right)}\right]
\end{aligned}
$$

- Observables:

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \equiv \frac{1-\left|\xi_{f}^{(q)}\right|^{2}}{1+\left|\xi_{f}^{(q)}\right|^{2}}, \quad \mathcal{A}_{\mathrm{CP}}^{\text {mix }} \equiv \frac{2 \operatorname{lm} \xi_{f}^{(q)}}{1+\left|\xi_{f}^{(q)}\right|^{2}} \\
& \xi_{f}^{(q)}=-e^{-i \phi_{q}}\left[\frac{A\left(\overline{B_{q}^{0}} \rightarrow f\right)}{A\left(B_{q}^{0} \rightarrow f\right)}\right] \\
& \phi_{q} \stackrel{\mathrm{SM}}{=} 2 \arg \left(V_{t q}^{*} V_{t b}\right)=\left\{\begin{array}{cc}
+2 \beta & (q=d) \\
-2 \lambda^{2} \eta & (q=s)
\end{array}\right] \stackrel{\rightharpoonup}{{ }^{2}}{ }^{t} W_{W}^{W} \overbrace{}^{t}{ }^{t}
\end{aligned}
$$

- $\Delta \Gamma_{s}$ provides $\mathcal{A}_{\Delta \Gamma}: \quad\left[\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\right]^{2}+\left[\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\right]^{2}+\left[\mathcal{A}_{\Delta \Gamma}\right]^{2}=1$

$$
\left\langle\Gamma\left(B_{q}(t) \rightarrow f\right)\right\rangle \propto\left[\cosh \left(\Delta \Gamma_{q} t / 2\right)-\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{q} t / 2\right)\right] e^{-\Gamma_{q} t}
$$

$\Rightarrow \mathcal{A}_{\Delta \Gamma}$ from untagged measurements!

- Preferred Mechanism: $\quad B_{q}^{0}-\overline{B_{q}^{0}}$ Mixing
- Highly CKM suppressed, loop-induced, fourth order weak interaction process in the SM!
- Simple dimensional arguments suggest that new physics in the TeV regime may well manifest itself as follows:
* $\Delta M_{q} \rightarrow$ impact on R_{t}, if different NP in $\Delta M_{d, s}$. * $\phi_{q} \rightarrow$ Impact on CP Violation!
[Nir \& Silverman; Grossman, Nir \& Worah; R.F. \& Mannel; ...]
- $\underline{\underline{\sin \phi_{d} \sim 0.734:} \Rightarrow \phi_{d} \sim \underbrace{47^{\circ}(\mathrm{a})}_{\mathrm{SM}} \vee \underbrace{133^{\circ}(\mathrm{b})}_{\mathrm{NP}!?}}$
- Analysis of CP violation in $B_{d} \rightarrow \pi^{+} \pi^{-}$suggests:

- Interestingly, $B \rightarrow \pi K, B \rightarrow \pi \pi$ branching ratios seem to favour $\gamma \gtrsim 90^{\circ}$, as well as $K^{+} \rightarrow \pi^{+} \nu \bar{\nu} \ldots$
[R.F., Isidori \& Matias, hep-ph/0302229, to appear in JHEP]

Burning Question:

Is ϕ_{s} Sizeable?

$$
\rightarrow \quad B_{s} \rightarrow J / \psi \phi
$$

$\ldots B_{s}-$ meson counterpart of $B_{d} \rightarrow J / \psi K_{S}$

- Topologies:

- Amplitude structure: $\quad A\left(B_{s} \rightarrow J / \psi \phi\right) \propto\left[1+\lambda^{2} a e^{i \vartheta} e^{i \gamma}\right]$
- Plausible assumption: [$\bar{\lambda}$: generic "expansion" parameter]

$$
a e^{i \vartheta}=\frac{\text { "Penguin" }}{\text { "Tree" }}=\mathcal{O}(0.2)=\mathcal{O}(\bar{\lambda}) \equiv \mathcal{O}(\lambda) .
$$

Final state is admixture of different CP eigenstates ...

- Angular distribution of $J / \psi\left[\rightarrow \ell^{+} \ell^{-}\right] \phi\left[\rightarrow K^{+} K^{-}\right]: \Rightarrow$
- Direct CP-violating effects: $0+\mathcal{O}\left(\bar{\lambda}^{3}\right)$
- Mixing-induced CP-violating effects:

$$
\sin \phi_{s}+\mathcal{O}\left(\bar{\lambda}^{3}\right)=\sin \phi_{s}+\mathcal{O}\left(10^{-3}\right)
$$

[Dighe, Dunietz \& R.F. (1999)]

- Standard Model: $\quad \phi_{s}=-2 \lambda^{2} \eta=\mathcal{O}\left(10^{-2}\right) \Rightarrow$

$$
\text { Hadronic uncertainties of } \mathrm{O}(10 \%) \text { ! }
$$

[In contrast to the $B_{d} \rightarrow J / \psi K_{\mathrm{S}}$ case!]

- Can be controlled through $B_{d} \rightarrow J / \psi \rho^{0}$ [R.F. (1999)]
- Another interesting aspect:
- $\underline{B_{s} \rightarrow J / \psi\left[\rightarrow \ell^{+} \ell^{-}\right] \phi\left[\rightarrow K^{+} K^{-}\right] \text {angular distribution: }}$

$$
\Rightarrow \quad \cos \delta_{f} \cos \phi_{s}
$$

* Fixing the sign of $\cos \delta_{f}$ through factorization:

$$
\Rightarrow \operatorname{sgn}\left(\cos \phi_{s}\right) \Rightarrow \text { unambiguous value of } \phi_{s}!
$$

- Important question, also if $\sin \phi_{s} \approx 0$ should be found...
[Dunietz, R.F. \& Nierste, Phys. Rev. D63 (2001) 114015]
- Also recently addressed with $B_{s} \rightarrow D_{ \pm} \eta^{\left({ }^{\prime}\right)}, D_{ \pm} \phi, \ldots$
[R.F., hep-ph/0301255, to appear in Phys. Lett. B, see below]
- Big Hope:

Experiments will find sizeable value of $\sin \phi_{s}$
... immediate signal for NP because of tiny SM "background" !

- Specific recent NP analyses with large impact on $\sin \phi_{s}$:
* SUSY: Ciuchini et al., Phys. Rev. D67 (2003) 075016
* Left-right symmetric model: Silverman et al., hep-ph/0305013
* ...

$$
B_{s} \rightarrow K^{+} K^{-}
$$

- Dominated by QCD penguin processes!
- Complements nicely $B_{d} \rightarrow \pi^{+} \pi^{-}$:

$$
U \text {-spin symmetry } \Rightarrow \gamma \quad \text { [R.F. ('99)] }
$$

- Other U-spin strategies to extract γ :

$$
\begin{aligned}
& -B_{s(d)} \rightarrow J / \psi K ; B_{d(s)} \rightarrow D_{d(s)}^{+} D_{d(s)}^{-}[\text {R.F. ('999)] } \\
& -B_{(s)} \rightarrow \pi K[\text { Gronau \& Rosner (2000)] } \\
& -B_{s(d)} \rightarrow J / \psi \eta[\text { Skands (2000)] }
\end{aligned}
$$

- Structure of decay amplitudes:

$$
\begin{aligned}
A\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right) & \propto\left[e^{i \gamma}-d e^{i \theta}\right] \\
A\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) & \propto\left[e^{i \gamma}+\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right) d^{\prime} e^{i \theta^{\prime}}\right]
\end{aligned}
$$

$$
d e^{i \theta}=\left.\frac{" P \mathrm{Pen"}}{\text { "Tree" }}\right|_{B_{d} \rightarrow \pi^{+} \pi^{-}}, \quad d^{\prime} e^{i \theta^{\prime}}=\left.\frac{" P \mathrm{Pen"}}{\text { "Tree" }}\right|_{B_{s} \rightarrow K^{+}} K^{-}
$$

- CP-violating observables:

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)= \\
& \mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)= \\
& \text {function }(d, \theta, \gamma) \\
& \mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right)= \\
& \mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right)=\text {function }\left(d, \theta, \gamma, \phi_{d}\right) \\
&\left.d^{\prime}, \theta^{\prime}, \gamma\right) \\
& \text { function }\left(d^{\prime}, \theta^{\prime}, \gamma, \phi_{s}\right)
\end{aligned}
$$

- As we have seen, ϕ_{d} and ϕ_{s} can "straightforwardly" be fixed, also if NP should contribute to $B_{q}^{0}-\overline{B_{q}^{0}}$ mixing:

$$
\begin{array}{r}
-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) \quad \& \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right): \\
\Rightarrow d=d(\gamma), \text { in a theoretically clean way! } \\
-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right) \quad \& \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right): \\
\quad \Rightarrow d^{\prime}=d^{\prime}(\gamma), \text { in a theoretically clean way! }
\end{array}
$$

- $\underline{U \text {-spin symmetry } \Rightarrow d=d^{\prime}, \quad \theta=\theta^{\prime}, ~}$

$$
-d=d^{\prime} \Rightarrow \quad \text { extraction of } \gamma, d, \theta, \theta^{\prime}
$$

- $\theta=\theta^{\prime}$ provides interesting U-spin check!

[R.F., Phys. Lett. B459 (1999) 306]
- Experimental accuracy of $\mathcal{O}\left(10^{\circ}\right)$ and $\mathcal{O}\left(1^{\circ}\right)$ for γ may be achieved at Tevatron-II and LHCb/BTeV, respectively:

$$
\Rightarrow \quad \text { very promising! }
$$

[Report of B-Decay Working Group, LHC Workshop, hep-ph/0003238; B Physics at the Tevatron: Run II and beyond, hep-ph/0201071

Waiting for $\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \ldots$

$$
H=\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right)\left[\frac{\operatorname{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)}\right] \sim 7.5 .
$$

- Using $d=d^{\prime}$ and $\theta=\theta^{\prime}: ~ \Rightarrow H=$ function $(d, \theta, \gamma) \Rightarrow$

- Allowed region in $B_{s} \rightarrow K^{+} K^{-}$observable space:

$$
\left[\phi_{s}=0^{\circ} ; \text { SM: } 50^{\circ} \leq \gamma \leq 70^{\circ}\right]
$$

\Rightarrow Very narrow target range for CDF-II \& LHCb!
[R.F. \& J. Matias, Phys. Rev. D66 (2002) 054009]

- Already the measurement of $\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)$by CDF-II will be an important and exciting achievement...

$$
B_{s} \rightarrow D_{s}^{(*) \pm} K^{\mp}, \ldots
$$

- Pure "tree" decays!
- Complement nicely $B_{d} \rightarrow D^{(*) \pm} \pi^{\mp}, \ldots$:
- Same theoretical basis!
- New strategies...

> R.F., hep-ph/0304027

- History \& alternative strategies:

Aleksan, Dunietz \& Kayser, Z. Phys. C54 (1992) 653
R.F. \& Dunietz, Phys. Lett. B387 (1996) 361

Dunietz, Phys. Lett. B427 (1998) 179
London, Sinha \& Sinha, Phys. Rev. Lett. 85 (2000) 1807
Diehl \& Hiller, Phys. Lett. B517 (2001) 125
Suprun, Chiang \& Rosner, Phys. Rev. D65 (2002) 054025
Gronau, Pirjol \& Wyler, Phys. Rev. Lett. 90 (2003) 051801

Basic Features

- Topologies:

no weak phase

$$
\phi_{q}+\gamma
$$

- Distinguish between the following cases:
$-\underline{q=s:} D_{s} \in\left\{D_{s}^{+}, D_{s}^{*+}, \ldots\right\}, u_{s} \in\left\{K^{+}, K^{*+}, \ldots\right\}:$
\rightarrow hadronic parameter $x_{s} e^{i \delta_{s}} \propto R_{b} \Rightarrow \underline{\text { large }}$ effects!
- $\underline{q=d:} D_{d} \in\left\{D^{+}, D^{*+}, \ldots\right\}, u_{d} \in\left\{\pi^{+}, \rho^{+}, \ldots\right\}:$
\rightarrow hadronic parameter $x_{d} e^{i \delta_{d}} \propto-\lambda^{2} R_{b} \Rightarrow$ tiny effects!
[For simplicity, we require that at least one of the D_{q}, \bar{u}_{q} states is a pseudoscalar meson. Otherwise, an angular analysis is needed!]
- Observables provided by $\cos \left(\Delta M_{q} t\right)$ terms:

$$
\left.\begin{array}{l}
C\left(B_{q} \rightarrow D_{q} \bar{u}_{q}\right) \equiv C_{q} \\
C\left(B_{q} \rightarrow \bar{D}_{q} u_{q}\right) \equiv \bar{C}_{q}
\end{array}\right\} \Rightarrow\left\langle C_{q}\right\rangle_{ \pm} \equiv \frac{\bar{C}_{q} \pm C_{q}}{2}:
$$

$$
\left\langle C_{q}\right\rangle_{-}=\left(1-x_{q}^{2}\right) /\left(1+x_{q}^{2}\right) \Rightarrow x_{q} \text { from } \mathcal{O}\left(x_{q}^{2}\right) \text { terms! }
$$

$$
\begin{aligned}
& -q=s: x_{s}=\mathcal{O}\left(R_{b}\right) \approx 0.4 \Rightarrow x_{s}^{2}=\mathcal{O}(0.16) \\
& -q=d: x_{d}=\mathcal{O}\left(-\lambda^{2} R_{b}\right) \approx-0.02 \Rightarrow x_{d}^{2}=\mathcal{O}(0.0004)!!!
\end{aligned}
$$

- Observables provided by $\sin \left(\Delta M_{q} t\right)$ terms:

$$
\begin{aligned}
\left.\begin{array}{rl}
S\left(B_{q} \rightarrow D_{q} \bar{u}_{q}\right) \equiv S_{q} \\
S\left(B_{q} \rightarrow \bar{D}_{q} u_{q}\right) \equiv \bar{S}_{q}
\end{array}\right\} \Rightarrow\left\langle S_{q}\right\rangle_{ \pm} \equiv \frac{\bar{S}_{q} \pm S_{q}}{2}: \\
s_{+} \equiv(-1)^{L}\left[\frac{1+x_{q}^{2}}{2 x_{q}}\right]\left\langle S_{q}\right\rangle_{+}=+\cos \delta_{q} \sin \left(\phi_{q}+\gamma\right) \\
s_{-} \equiv(-1)^{L}\left[\frac{1+x_{q}^{2}}{2 x_{q}}\right]\left\langle S_{q}\right\rangle_{-}=-\sin \delta_{q} \cos \left(\phi_{q}+\gamma\right)
\end{aligned}
$$

[Note the $(-1)^{L}$ factors, where L is the $D_{q} \bar{u}_{q}$ angular momentum!]

$$
\sin ^{2}\left(\phi_{q}+\gamma\right)=\frac{1}{2}\left[\left(1+s_{+}^{2}-s_{-}^{2}\right) \pm \sqrt{\left(1+s_{+}^{2}-s_{-}^{2}\right)^{2}-4 s_{+}^{2}}\right]
$$

$$
\Rightarrow \quad \text { Eightfold solution for } \phi_{q}+\gamma!
$$

$\left[\operatorname{sgn}\left(\cos \delta_{q}\right)>0\right.$, as suggested by factorization \Rightarrow fourfold solution]

Closer Look at "Untagged" Rates

- New strategy employing $\Delta \Gamma_{s}$:
- If the width difference $\Delta \Gamma_{s}$ is sizeable, time-dependent untagged rates provide observables $\overline{\mathcal{A}}_{\Delta \Gamma_{\mathrm{S}}}$ and $\mathcal{A}_{\Delta \Gamma_{\mathrm{S}}}$:

$$
\Rightarrow \quad \tan \left(\phi_{s}+\gamma\right)=-\left[\frac{\left\langle S_{s}\right\rangle_{+}}{\left\langle\mathcal{A}_{\Delta \Gamma_{\mathrm{s}}}\right\rangle_{+}}\right]=+\left[\frac{\left\langle\mathcal{A}_{\Delta \Gamma_{\mathrm{s}}}\right\rangle_{-}}{\left\langle S_{S}\right\rangle_{-}}\right]
$$

... essentially unambiguous value of $\phi_{s}+\gamma$, i.e. of γ !

- Because of $\left\langle S_{s}\right\rangle_{ \pm} \propto x_{s}$ and $\left\langle\mathcal{A}_{\Delta \Gamma_{s}}\right\rangle_{ \pm} \propto x_{s}$, we have not to rely on $\mathcal{O}\left(x_{s}^{2}\right)$ terms, but need sizeable $\Delta \Gamma_{s} \cdots$
- Untagged rates are also very useful in the case of small $\Delta \Gamma_{q}$:

$$
\Rightarrow \quad \text { Extraction of "unevolved" untagged rates }
$$

... various strategies to determine x_{q} from the ratio of

$$
\left\langle\Gamma\left(B_{q} \rightarrow D_{q} \bar{u}_{q}\right)\right\rangle+\left\langle\Gamma\left(B_{q} \rightarrow \bar{D}_{q} u_{q}\right)\right\rangle
$$

and CP-averaged rates of $B^{ \pm}$or flavour-specific B_{q} decays:
$-B_{d}^{0} \rightarrow D^{(*)+} \pi^{-}: B^{+} \rightarrow D^{(*)+} \pi^{0}$ or $B_{d}^{0} \rightarrow D_{s}^{+} \pi^{-}$
$-B_{s}^{0} \rightarrow D_{s}^{(*)+} K^{-}: B^{+} \rightarrow D_{s}^{(*)+} \pi^{0}$ or $B_{s}^{0} \rightarrow D_{s}^{(*)-} \pi^{+}$

Bounds on $\phi_{q}+\gamma$

- Keeping δ_{q} and x_{q} as "unknown", free parameters yields

$$
\begin{equation*}
\left|\sin \left(\phi_{q}+\gamma\right)\right| \geq\left|\left\langle S_{q}\right\rangle_{+}\right|, \quad\left|\cos \left(\phi_{q}+\gamma\right)\right| \geq\left|\left\langle S_{q}\right\rangle_{-}\right| \tag{1}
\end{equation*}
$$

- If x_{q} has been measured, stronger constraints arise from

$$
\begin{equation*}
\left|\sin \left(\phi_{q}+\gamma\right)\right| \geq\left|s_{+}\right|, \quad\left|\cos \left(\phi_{q}+\gamma\right)\right| \geq\left|s_{-}\right| \tag{2}
\end{equation*}
$$

- Once s_{+}and s_{-}are known, we may of course determine $\phi_{q}+\gamma$ through the "conventional" approach...
- However, the bounds in (2) provide essentially the same information and are much simpler to implement:
$\gamma=60^{\circ}, \phi_{d}=47^{\circ}, \phi_{s}=0^{\circ}, x_{d}=-0.02, x_{s}=0.4 \rightarrow$
$-\underline{\delta_{d}=\delta_{s}=0^{\circ}}:$
* $B_{d}: 26^{\circ} \leq \gamma \leq 60^{\circ} \quad\left[\left.\gamma\right|_{\text {conv. }}=26^{\circ} \vee 43^{\circ} \vee 60^{\circ}\right]$
* $B_{s}: 60^{\circ} \leq \gamma \leq 120^{\circ} \quad\left[\left.\gamma\right|_{\text {conv. }}=60^{\circ} \vee 90^{\circ} \vee 120^{\circ}\right]$
\Rightarrow overlap of $\gamma=60^{\circ}$!
$-\delta_{d}=\delta_{s}=40^{\circ}:$
* $B_{d}:\left(0^{\circ} \leq \gamma \leq 32^{\circ}\right) \vee\left(54^{\circ} \leq \gamma \leq 86^{\circ}\right)$
$\left[\left.\gamma\right|_{\text {conv. }}=3^{\circ} \vee 26^{\circ} \vee 60^{\circ} \vee 83^{\circ}\right]$
* $B_{s}:\left(42^{\circ} \leq \gamma \leq 71^{\circ}\right) \vee\left(109^{\circ} \leq \gamma \leq 138^{\circ}\right)$
$\left[\left.\gamma\right|_{\text {conv. }}=50^{\circ} \vee 60^{\circ} \vee 120^{\circ} \vee 130^{\circ}\right]$
\Rightarrow overlap of $54^{\circ} \leq \gamma \leq 71^{\circ}$!

Combined Analysis of $B_{s, d} \rightarrow D_{s, d} \bar{u}_{s, d}$ Modes

- $B_{s}^{0} \rightarrow D_{s}^{(*)+} K^{-}, B_{d}^{0} \rightarrow D^{(*)+} \pi^{-}$related through $s \leftrightarrow d:$

$$
\begin{aligned}
& \frac{U \text {-spin symmetry }}{} \Rightarrow a_{s}=a_{d} \quad \text { and } \quad \delta_{s}=\delta_{d} \\
& a_{s}=\frac{x_{s}}{R_{b}}, \quad a_{d}=-\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right) \frac{x_{d}}{R_{b}} \rightarrow\left|\frac{\text { Hadr. ME }}{\text { Hadr. ME }}\right|
\end{aligned}
$$

- Various possibilities to implement these relations:
- For example, assume that $a_{s}=a_{d}$ and $\delta_{s}=\delta_{d}$:

$$
\tan \gamma=-\left[\frac{\sin \phi_{d}-S \sin \phi_{s}}{\cos \phi_{d}-S \cos \phi_{s}}\right]
$$

$$
S=-R\left[\frac{\left\langle S_{d}\right\rangle_{+}}{\left\langle S_{s}\right\rangle_{+}}\right] \quad \text { with } \quad R=\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right)\left[\frac{1}{1+x_{s}^{2}}\right]
$$

$$
R=\left(\frac{f_{K}}{f_{\pi}}\right)^{2}\left[\frac{\Gamma\left(\overline{B_{s}^{0}} \rightarrow D_{s}^{(*)+} \pi^{-}\right)+\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{(*)-} \pi^{+}\right)}{\left\langle\Gamma\left(B_{s} \rightarrow D_{s}^{(*)+} K^{-}\right)\right\rangle+\left\langle\Gamma\left(B_{s} \rightarrow D_{s}^{(*)-} K^{+}\right)\right\rangle}\right]
$$

- Alternatively, we may only assume that $\delta_{s}=\delta_{d}$ or $a_{s}=a_{d} \ldots$
- Important advantages, apart from features related to ambiguities:
$-x_{d}$ has not to be fixed, and x_{s} may only enter through $1+x_{s}^{2}$ correction, determined from untagged B_{s} rates!
- Measurement of x_{s} / x_{d} would only be interesting for the inclusion of U-spin-breaking effects in a_{s} / a_{d} !

Colour-Suppressed $B_{q} \rightarrow D^{0} f_{r}, \overline{D^{0}} f_{r}$ Modes

- $B_{d} \rightarrow D K_{\mathrm{S}(\mathrm{L})}, B_{s} \rightarrow D \eta^{\left({ }^{\prime}\right)}, D \phi, \ldots: x_{f_{s}} e^{i \delta_{f_{s}}} \propto R_{b}$

CP eigenstates $D_{ \pm}: \Rightarrow$ additional interference effects:

$$
\begin{gathered}
\Gamma_{+-}^{f_{s}} \equiv \frac{\left\langle\Gamma\left(B_{q} \rightarrow D_{+} f_{s}\right)\right\rangle-\left\langle\Gamma\left(B_{q} \rightarrow D_{-} f_{s}\right)\right\rangle}{\left\langle\Gamma\left(B_{q} \rightarrow D_{+} f_{s}\right)\right\rangle+\left\langle\Gamma\left(B_{q} \rightarrow D_{-} f_{s}\right)\right\rangle} \\
\Rightarrow \quad|\cos \gamma| \geq\left|\Gamma_{+-}^{f_{s}}\right|
\end{gathered}
$$

$\left\langle S_{f_{s}}\right\rangle_{ \pm} \equiv \frac{S_{+}^{f_{s}} \pm S_{-}^{f_{s}}}{2} \quad$ with $\quad S_{ \pm}^{f_{s}} \equiv \mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{q} \rightarrow D_{ \pm} f_{s}\right) \quad \Rightarrow$

$$
\tan \gamma \cos \phi_{q}=\left[\frac{\eta_{f_{s}}\left\langle S_{f_{s}}\right\rangle_{+}}{\Gamma_{+-}^{f_{s}}}\right]+\left[\eta_{f_{s}}\left\langle S_{f_{s}}\right\rangle_{-}-\sin \phi_{q}\right]
$$

$$
\left[\eta_{f_{s}} \equiv(-1)^{L} \eta_{\mathrm{CP}}^{f_{S}}, \text { where } L \text { is angular momentum of } D f_{s}\right]
$$

- $\underline{B}_{s} \rightarrow D_{ \pm} K_{\mathrm{S}(\mathrm{L})}, B_{d} \rightarrow D_{ \pm} \pi^{0}, D_{ \pm} \rho^{0}, \ldots: \quad x_{f_{d}} e^{i \delta_{f_{d}}} \propto-\lambda^{2} R_{b}$

$$
\eta_{f_{d}}\left\langle S_{f_{d}}\right\rangle_{-}=\sin \phi_{q}+\mathcal{O}\left(x_{f_{d}}^{2}\right)=\sin \phi_{q}+\mathcal{O}\left(4 \times 10^{-4}\right)
$$

... theoretical accuracy is one order of magnitude better than in $B_{s} \rightarrow J / \psi \phi$, i.e. ϕ_{s}^{SM} with $\mathcal{O}(1 \%)$ uncertainty! [R.F., hep-ph/0301255 (\rightarrow PLB) \& hep-ph/0301256 (\rightarrow NPB $)$]

Conclusions and Outlook

- Will $B_{s} \rightarrow \psi \phi$ show sizeable mixing-induced CP-violating effects, thereby indicating NP effects in $B_{s}^{0}-\overline{B_{s}^{0}}$ mixing?
- $\underline{\underline{B_{s} \text { decays offer interesting avenues to extract } \gamma \text {, e.g.,: }}}$
$-\underline{B_{s} \rightarrow K^{+} K^{-} \quad \& \quad B_{d} \rightarrow \pi^{+} \pi^{-}}$
* Governed by QCD penguin processes!
$-\underline{B_{s} \rightarrow D_{s}^{(*) \pm} K^{\mp} \quad \& \quad B_{d} \rightarrow D^{(*) \pm} \pi^{\mp}:}$
* Pure "tree" decays!

Will discrepancies show up?
... could indicate NP effects in the penguin sector!

- B_{s} decays are the "El Dorado" for B-physics studies at hadron colliders:
- Important first steps at run II of the Tevatron.
- Physics potential can be fully exploited by LHCb \& BTeV.

