Branching Ratios from B^0_{S} and Λ^0_{b}

Matthew Martin Johns Hopkins University

for the CDF collaboration

Flavor Physics & CP Violation Ecole Polytechnique, Paris, France June 2003

Outline:

- Motivation
- Branching Ratios at CDF
- Results from:

$$- B^{0}_{\ S} \rightarrow D^{-}_{\ S} \pi^{+}$$
$$- \Lambda^{0}_{\ b} \rightarrow \Lambda^{+}_{\ c} \pi^{-}$$
$$- B \rightarrow h^{+} h^{-}$$

• Conclusions

CDF plans a rich program of B-Physics:

- Precision study of the B_{S}^{0} :
 - BR's, mass and lifetime
 - Plan to observe or rule out SM B_{S}^{0} mixing
 - Measure $\Delta \Gamma_{B_{s}}$
 - Measure γ
- The world's largest $\Lambda^0_{\ b}$ sample:
 - BR's, mass and lifetime
 - CP Violation searches
- This program just beginning...

What we know: B^0_{S}

PDG 2002·	B ⁰ _s DECAY MODES	Fraction (Γ_j/Γ) Confidence level (M	eV/c)
IDG 2002.	D_s^- anything	(94 ±30)%	_
	$\stackrel{-}{\Longrightarrow} D_s^- \ell^+ \nu_\ell$ anything	[<i>iii</i>] (7.9 ± 2.4)%	-
	NEW! $D_s^- \pi^+$	< 13 %	2321
	$D_s^{(*)+}D_s^{(*)-}$	$(23 \begin{array}{c} +21 \\ -13 \end{array})\%$	-
	$I/\psi(1S)\phi$	$(9.3 \pm 3.3) \times 10^{-4}$	1590
	$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3} 90\%$	1788
	$J/\psi(1S)\eta$	$< 3.8 \times 10^{-3} 90\%$	1735
	$\psi(2S)\phi$	seen	1122
	$\pi^{+}\pi^{-}$	$< 1.7 \times 10^{-4} 90\%$	2681
New results for:	$\pi^{\circ}\pi^{\circ}$	$< 2.1 \times 10^{-4} 90\%$	2681
	$\eta \pi^0$	$< 1.0 \times 10^{-3} 90\%$	2655
	$\eta \eta$	$< 1.5 \times 10^{-3}$ 90%	2628
	$\rho^{0}\rho^{0}$	$< 3.20 \times 10^{-4} 90\%$	_
$A^{\circ} \rightarrow D^{-} \pi^{+}$	$\phi \rho^0$	$< 6.17 \times 10^{-4} 90\%$	_
$D_{S} / D_{S} / $	$\phi \phi$	$< 1.183 \times 10^{-3} 90\%$	-
	$\pi^{\mp}K^{-}$	$< 2.1 \times 10^{-4} 90\%$	2660
		$< 5.9 \times 10^{-3} 90\%$	2639
-0	$K^{-}(892)^{\circ}\rho^{\circ}$	$< 7.67 \times 10^{-4} 90\%$	-
$A^{\circ} \rightarrow K^{+}K^{-}$	K*(892)* K*(892)*	$< 1.681 \times 10^{-5} 90\%$	-
$D_S / M M$	<i>φK</i> ⁻ (892)*	$< 1.013 \times 10^{-5} 90\%$	
\sim	pp	$< 5.9 \times 10^{-4} 90\%$	2515
		$< 1.48 \times 10^{-4} 90\%$	2085
	$\varphi \gamma$	$< 7 \times 10^{-7} - 90\%$	2588

Lepton Family number (LF) violating modes or

 $\Delta B = 1$ weak neutral current (B1) modes

 ρ

$\mu^{+}\mu^{-}$	B1	$\pi_{\gamma_{n}}^{\mathcal{C}^{2}}$	2.0	$\times 10^{-6}$	90%	2682
$e^{+}e^{-}$	B1	$q_{\mu_1}^{\rm er}$	5.4	$\times 10^{-5}$	90%	2864
$e^{\pm}\mu^{\mp}$	LF	[ff] <	6.1	$\times 10^{-6}$	90%	2864
$\phi \nu \overline{\nu}$	B1	$<_{\nu_1}^{e^*}$	5.4	$\times 10^{-3}$	90%	-

What we know: $\Lambda^0_{\ b}$

PDG 2002:

	Λ ⁰ _b DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
•	$J/\psi(1S)A$	$(4.7 \pm 2.8) imes 10^{-1}$	4	1744
NEW! 🌩	$\Lambda_c^+ \pi^-$	seen		2345
•	$\Lambda_{c}^{+}a_{1}(1260)^{-}$	seen		2156
	$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	[s] (7.7±1.8) %		_
	$p\pi^-$	$< 5.0 \times 10^{-1}$	5 90%	2732
	рК [—]	$< 5.0 \times 10^{-1}$	5 90%	2711

Nearly New results for:
$$\Lambda_b^0 \to \Lambda_c^+ \pi^-$$

Hadronic Level 2 Trigger:

•Interaction rate $\sim 2.5 MHz$

•Reduced to $\sim 300 Hz$ on Level 2 output.

•Critical component : SVT impact parameter cuts.

•2 Tracks with $IP > 120 \mu m$

Branching Ratios at CDF:

• Compare search mode to kinematically similar mode, eg:

$$\frac{\sigma_b \times f_{baryon} \times BR(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{\sigma_b \times f_d \times BR(B_d^0 \to D^+ \pi^-)} = \frac{\varepsilon_{B_d^0} \times N_{\Lambda_b^0} \times BR(D^- \to K^- \pi^+ \pi^+)}{\varepsilon_{\Lambda_b^0} \times N_{B_d^0} \times BR(\Lambda_c^+ \to pK^- \pi^+)}$$

- Cancellation:
 - $-\sigma_b$
 - Systematics in Trigger and Reconstruction Efficiency.
- Production fractions (f):
 - LEP/CDF Combined.
 - Aim to measure at CDF.
- Daughter BR's :
 - Rely on existing measurements.
 - Future : CLEO-C
- Plan to normalise to same channel Semileptonic

Normalisation mode: $B^0_{\ d} \rightarrow D^{\mp} \pi^{\pm}$

• Same mode for:
•
$$B^0_{\ S} \to D^{\mp}_{\ S} \pi^{\pm}$$

• $\Lambda^0_{\ b} \to \Lambda^+_{\ c} \pi^-$

- Similar cuts to signal
- D^* also visible.

Reconstructing: $B^0_{\ S} \to D^{\mp}_{\ S} \pi^{\pm}$

First Observation!

Important Cuts:

- 2 Tracks required to be Trigger Tracks.
- $(1.013 < m_{K^+K^-} < 1.028 GeV)$
- D_s mass constrained to PDG value
- $p_t(D_s) > 4 GeV$
- $p_t(B_s) > 4 GeV$
- 2D-Dist (Prim $\rightarrow D_s$) > 400 μm
- 2D-Flight-Dist $(B_s) > 100 \,\mu m$
- Impact-Par $(B_s) < 100 \, \mu m$

Systematics:

Particle	$\sigma\!\!\left(\!rac{N_{\scriptscriptstyle B_s}}{N_{\scriptscriptstyle B_d}}\! ight)$
B_{s}	±0.008
B_d	± 0.008

$$\leftarrow \text{Uncertainty in } \frac{N_{B_s}}{N_{B_d}} \text{ due to fit.}$$

Source	$\sigma(arepsilon_{\scriptscriptstyle B_s} / arepsilon_{\scriptscriptstyle B_d})$	$\mathcal{E}_{\mathcal{D}}$
XFT 1-miss	+0.001	$\leftarrow \text{Uncertainty in} \frac{-B_s}{\varepsilon}$
Min b quark p_t	-0.08	(Due to MC) \mathcal{C}_{B_d}
B lifetimes	-0.02 + 0.04	
D lifetimes	0.00 + 0.04	$\mathbf{D}\mathbf{D}\mathbf{T} = 1\mathbf{C} = 1\mathbf{C} = 1\mathbf{C}$
Total	-0.08 + 0.06	BK TOTAL SYST: ± 0.07

Results:

$$\frac{f_s \times BR(B_s \to D_s \pi)}{f_d \times BR(B_d \to D \pi)} = 0.44 \pm 0.11(stat) \pm 0.11(BR) \pm 0.07(syst)$$

From PDG:
$$\frac{f_s}{f_d} = 0.273 \pm 0.034$$
:

 $\frac{BR(B_s \to D_s \pi)}{BR(B_d \to D \pi)} = 1.61 \pm 0.40(stat) \pm 0.40(BR) \pm 0.26(syst) \pm 0.20 \left(PDG\frac{f_s}{f_d}\right)$

Reconstructing $\Lambda^0_{\ b} \to \Lambda^+_{\ c} \pi^-$

Important cuts:

- Confirm Trigger
- $p_t(P) > 2 GeV$
- $p_t(\pi \operatorname{from} \Lambda^0_b) > 2 \operatorname{GeV}$
- $p_t(\Lambda_b^0) > 7.5 \, GeV$
- $p_t(\Lambda_c^{\pm}) > 4.5 \, GeV$
- $ct(\Lambda^0_b) > 225 \,\mu m$
- $ct\left(\Lambda_c \operatorname{from} \Lambda_b^0\right) > -65 \,\mu m$
- Impact-Par $\left(\Lambda^{0}_{b}\right) < 100 \, \mu m$
- $(2.265 < m(\Lambda_c) < 2.303 \, GeV)$

b Reflections:

Effect of dE/dX:

Expected Systematics:

Source	Size (%)	
B lifetime	negligible	
$\Lambda^0_{\ b}$ lifetime	+4 -5	
Λ_c Dalitz structure	±1	
b p_t spectrum	+1	
$\Lambda^0_{\ b}, \Lambda_c$ polarisation	±2	
XFT 1 miss	+3	
Phi efficiency	+3	
Total	+6 -5	

Current Status:

• Finalising reflection model

•
$$\frac{f_{baryon} \times BR(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{f_d \times BR(B_d^0 \to D^+ \pi^-)}$$
 measurement for EPS

• Systematic uncertainty dominated by:

$$\sigma \Big(BR(\Lambda_c^+ \to pK^-\pi^+) \Big) \sim 25\%$$

Prospects for improving normalisation:

Note : Hadronic Trigger Path

Reconstructing $B \rightarrow h^+ h^-$

- $h^+ h^-$ required to be trigger tracks.
- Optimise offline Cuts on MC signal, data sideband:
 - $p_{t1} + p_{t2} > 5.5 \, GeV$
 - $(|IP_1|, |IP_2|) > 150 \,\mu m$
 - 2D-Flight-Dist $(B) > 300 \,\mu m$
 - $|IP_B| < 80 \, \mu m$
 - Isolation:
 - •Defined in a cone about the B axis:

 $I = \frac{B - daughters}{B - daughters}$

All Tracks

Different signal contributions:

Monte Carlo:

- Total width due to several different contributions.
- $B_d \rightarrow \pi \pi, B_s \rightarrow KK$ on top of each other \Rightarrow PID essential
- Disentangle using:
- matic **f** Invt Mass
 - Relative momentum

• PID
$$\left(\frac{dE}{dx}\right)$$

← Most Important

Kinematic separation:

Monte Carlo:

Particle ID : dE / dx

FPCP June 2003

Systematics:

	$\frac{B_d \to \pi\pi}{B_d \to K\pi}$	$\mathrm{A}_{\mathrm{CP}}^{\mathrm{dir}}(\pi K)$
BCK Shape	+0.019 -0.015	+0.002 -0.009
$M\left(B_{d}\right)$	+0.004 -0.004	+0.0003 -0.0003
$M\left(B_{s}\right)$	+0.005 -0.006	+0.002 -0.003
$\sigma\left(M ight)$	+0.004 -0.009	+0.006 -0.005
MC stat	+0.002 -0.002	+0.007 -0.007
* dE / dx	+0.05 -0.05	+0.01 -0.01

M.Martin, Johns Hopkins for CDF,

* new calibration will reduce systematic

FPCP June 2003

Current Results:

$$\frac{BR(B^0_d \to \pi\pi)}{BR(B^0_d \to K\pi)} = 0.26 \pm 0.11(stat) \pm 0.055(syst)$$

$$A_{CP}^{dir}(\pi K) = 0.02 \pm 0.15(stat) \pm 0.17(syst)$$

Yields:

PDG 2002:

$$\frac{BR(B_d^0 \to \pi\pi)}{BR(B_d^0 \to K\pi)} = 0.29^{+0.13}_{-0.12} + 0.01_{-0.02}$$

$B^0_{\ d} \to \pi\pi$	148±17(stat)
$B^0_{\ d} \to K\pi$	$39 \pm 14(\text{stat})$
$B^0_{s} \to KK$	90±17(stat)
$B^0_{\ s} \to K\pi$	$3 \pm 11(\text{stat})$

Conclusions:

- CDF has robust signals in:
 - $\Lambda^0_{\ b} \to \Lambda^+_{\ c} \pi^-$
 - $B^0_{S} \rightarrow D^{\overline{+}}_{S} \pi^{\pm}$
 - $B_s \rightarrow KK$
- First measurement of $B^0_{\ S} \rightarrow D^{\mp}_{\ S} \pi^{\pm}$ relative BR
- First observation of $B_s \to KK$

- Measurement of $\frac{BR(B^0_d \to \pi\pi)}{BR(B^0_d \to K\pi)}$ validates extraction procedure

- Expect $B_s \to KK$ and $\Lambda^0_{\ b} \to \Lambda^+_{\ c} \pi^-$ for EPS
- First steps toward an exciting programme in $B^0_{\ S}$ physics and $\Lambda^0_{\ b}$ physics (mixing and CPV).