

B Lifetimes and BB Mixing Results and Prospects FPCP2003

Vivek Jain Brookhaven National Laboratory (D0 Experiment)

June 4, 2003

Outline:

- B Lifetimes
- B_d mixing
- B_s mixing
- Conclusions

B physics: Diverse environments

$$\begin{array}{l} \sigma(\mathrm{p}\overline{\mathrm{p}} \to \mathrm{b}\overline{\mathrm{b}}) & \approx 150 \; \mu b \; \mathrm{at} \; \sqrt{s} = 2 \mathrm{TeV} \\ \sigma(\mathrm{e}^{+}\mathrm{e}^{-} \to \mathrm{b}\overline{\mathrm{b}}) & \approx \quad 7 \; nb \; \mathrm{at} \; \mathsf{Z}^{\circ} \\ \sigma(\mathrm{e}^{+}\mathrm{e}^{-} \to \mathrm{b}\overline{\mathrm{b}}) & \approx \quad 1 \; nb \; \mathrm{at} \; \Upsilon(4\mathsf{S}) \end{array}$$

At the Tevatron:

All species produced, including B_s° , B_c , Λ_b Environment not as clean as e^+e^- machines Lower trigger efficiencies

CLEO

Litetimes

- ullet Lifetime difference between ${
 m D}^+, {
 m D}^0$ underscored the importance of understanding non-leptonic decays
- Precise lifetime meas. can be used to extract weak parameters, $e.g.\ \mathrm{f}_B$
- Inclusive decay rates of heavy hadrons can be computed from first principles of QCD (via Operator Product Expansion - OPE)
- OPE involves Coefficients calculable within short-distance physics Expectation values of local operators given by long distance physics Involves inverse powers of heavy quark mass (obtained from symmetry, lattice QCD, quark models, QCD sum rules)
- ullet Leading non-perturbative correction $pprox (1/{
 m m}_{
 m Q}^2)$ (5% for B hadrons)
- Effects like Pauli Interference, Weak Annihilation arise at $\approx (1/m_Q^3)$ Main effect is to cause lifetime differences in hadrons of the same flavour
- For Charm hadrons , OPE is only semi-quantitative (Bigi, hep-ph 0001003) $\tau(\Xi_c^+)/\tau(\Lambda_c^+))\approx 1.3$ $\tau(D^+)/\tau(D^0) \approx 2$ $\tau(D_s)/\tau(D^0) \approx 0.9 - 1.3$ (PDG: 1.21 ± 0.017) -WA (PDG: 2.55 ± 0.048) -PI (PDG: 2.2 ± 0.20)

B Lifetimes

- ullet Situation for B hadrons is better, because of larger m_{Q}
- Most B hadrons have very similar lifetimes (unquenching effects could be sizable) - Nierste, hep-ph/0209008 $\tau(B^+)/\tau(B^0) = 1.053 \pm 0.016 \pm 0.017$ Using inputs from quenched lattice, NLO prediction:
- OPE predicts $au(\mathrm{B}_c^+) \approx 0.5$ ps (PDG: 0.46 ± 0.17) absence of $\sim \mathcal{O}\left(1/\mathsf{m}_{\mathbb{Q}}\right)$ corrections is crucial here
- Λ_b is still a "puzzle" $\tau(\Lambda_b)/\tau(\mathrm{B}_d^0)\approx 0.9-1.0 \ \mathrm{(PDG:}\ 0.80\pm 0.05\mathrm{)}$
- Expectation for $\tau(\mathrm{B}_s)/\tau(\mathrm{B}_d) \approx 1.0 \pm \mathcal{O}(0.01)$
- ullet Need experimental results for other beauty baryons, e.g. Ξ_b
- Ability to measure lifetimes necessary ingredient for time-dependent measurements of Mixing, CP violation
- For B_d , B_s we can also look at lifetime differences between Mass eigenstates (more later)

Exclusive and Inclusive measurements for B°, B⁺, B_s Inclusive measurements for Λ_b , Ξ_b , B_c

B Lifetime Working Group
July 2002

Theory predictions

New Results from the Tevatron

D0 is new to this arena $(\mathcal{L} \approx 45 \mathrm{pb}^{-1})$

Correction Factor needed to infer B momentum from J/Ψ vertex

 $\langle \tau \rangle = 1.561 \pm 0.024 \text{(stat)} \pm 0.074 \text{(syst)} \text{ ps}$ (B WG: 1.573 ± 0.007)

$$\langle \tau \rangle = 425 \pm 28 \pm 6 \mu \text{m}$$
 (B WG: $462 \pm 4 \mu \text{m}$)

$\lambda_{\rm B^{\pm}}$ distribution ($\mathcal{L} \approx 45 {\rm pb}^{-1}$)

$$\langle \tau \rangle = 1.76 \pm 0.24 \text{(stat)} \text{ ps}$$
 (B WG 1.656 ± 0.014)

CDF
$$\langle \tau \rangle = 1.57 \pm 0.07 \pm 0.02 \text{ ps}$$
 ($\mathcal{L} \sim 70 \text{ pb}^{-1}$)

All previous measurements of B_s (except CDF) and Λ_b lifetimes were with inclusive decays Both CDF and D0 are fully reconstructing these decays

$$\langle \tau \rangle = 379 \pm 59 \pm 6 \mu \text{m}$$
 (B WG: $438 \pm 17 \mu \text{m}$)

$$(\mathcal{L} \approx 45 \mathrm{pb}^{-1})$$

Event estimates for 1 fb $^{-1}$

 ${\sf B}_s o {\sf J}/\Psi\Phi pprox 1000-1500$ events $\Lambda_b o {\sf J}/\Psi\Lambda pprox 1000$ events $o \Lambda_c\pi pprox 1000$ events ${\sf B}_c o {\sf J}/\Psi l \nu pprox 300-1000$ events $o {\sf J}/\Psi\pi pprox 50-100$ events Stay tuned for lifetime analyses!

$B\overline{B}$ oscillations

where sides CA and BA are given by R_b , R_t respectively

$$R_{b} \equiv \frac{|V_{ud}V_{ub}^{*}|}{|V_{cd}V_{cb}^{*}|} = \sqrt{\bar{\varrho}^{2} + \bar{\eta}^{2}} = (1 - \frac{\lambda^{2}}{2}) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|,$$

$$R_{t} \equiv \frac{|V_{td}V_{tb}^{*}|}{|V_{cd}V_{cb}^{*}|} = \sqrt{(1 - \bar{\varrho})^{2} + \bar{\eta}^{2}} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right|.$$

 R_t can be obtained from B_d , B_s oscillations

Proceeds via second order weak transition

BB mixing very important in constraining CKM

ullet Side CA of the Unitarity triangle $(\propto |V_{td}|)$ is also

$$R_t = 0.88 \left[\frac{\xi}{1.18} \right] \sqrt{\frac{18.0/\text{ps}}{\Delta M_s}} \sqrt{\frac{\Delta M_d}{0.5/\text{ps}}}, \qquad \xi = \frac{\sqrt{B_{B_s} F_{B_s}}}{\sqrt{B_{B_d} F_{B_d}}}$$

• Mass eigenstates can be written in terms of flavour eigenstates

$$|\mathbf{B}_{s}^{L}\rangle = \mathbf{p}|\mathbf{B}_{s}^{0}\rangle + \mathbf{q}|\overline{\mathbf{B}}_{s}^{0}\rangle |\mathbf{B}_{s}^{H}\rangle = \mathbf{p}|\mathbf{B}_{s}^{0}\rangle - \mathbf{q}|\overline{\mathbf{B}}_{s}^{0}\rangle$$

• $\Delta M_s \equiv M_H - M_L$, $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$

ullet An initially pure B^0_s state can evolve in time

$$|B_{s}^{0}(t)\rangle = g_{+}(t)|B_{s}^{0}\rangle + g_{-}(t)\frac{p}{q}|B_{s}^{0}\rangle |B_{s}^{0}(t)\rangle = g_{-}(t)\frac{q}{p}|B_{s}^{0}\rangle + g_{+}(t)|B_{s}^{0}\rangle$$

Unmixed/Mixed probability can be written as

$$\mathcal{P}_{u,m}(t) = \frac{\Gamma_s e^{-\Gamma_s t}}{2} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) \pm \cos(\Delta m_s t) \right]$$

• For $\Delta\Gamma_spprox 0$ (SM expectation)

$$\mathcal{P}_{u,m}(t) = \frac{\Gamma_s e^{-\Gamma_s t}}{2} [1 \pm \cos(\Delta m_s t)]$$

Can also make time-integrated mixing measurement where $\chi_{d(s)}$ is a function of $\Delta \mathrm{m}_{d(s)}$, $\Delta \mathrm{m}_{d(s)}$, $\frac{\mathrm{q}}{\mathrm{p}} \frac{\mathrm{A} \overline{f}}{\mathrm{A} f}$ χ_d (at $\Upsilon(\mathsf{4S}))$ or $\overline{\chi}=\mathrm{f}_d\chi_d+\mathrm{f}_s\chi_s$ (at LEP, Tevatron)

- Study of B hadrons lead to $\eta, V_{ub}/V_{cb}, V_{cb}, V_{td}, V_{ts}$ V_{td}, V_{ts} via B_d, B_s oscillations η can be inferred from CP violation in B_d $\to J/\Psi {\rm K_s^0}$
- ullet Yellow band is from $B\overline{B}$ mixing measurements
- ullet $\overline{
 ho}$ > 0 is from the lower limit on $B_{\rm s}$ mixing

Narrower region is the 95% (SM) allowed region - Buras hep-ph/0210291

Experimental Considerations

For time-dependent mixing measurements, need

Final state reconstruction
$$\mathsf{B} \to \mathsf{J}/\Psi\mathsf{X},\ \mathsf{D}^{(*)}l\nu, \mathsf{D}^{(*)}(\mathsf{n}\pi),...$$

- Proper time measurement
- Flavour tagging at production and decay

• Measure asymmetry
$$\mathcal{A}_f(t)$$
,
$$\mathcal{A}_f(t) = \frac{\mathcal{P}_u - \mathcal{P}_m}{\mathcal{P}_u + \mathcal{P}_m} = \frac{\cos(\Delta m_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2})}$$

ullet Crucial component is proper time resolution, $t=\mathsf{m}_B\mathsf{L}/\mathsf{p}$,

$$\sigma_t = \frac{\mathbf{m}_B}{\mathbf{p}} \sigma_L \oplus \frac{\sigma_p}{\mathbf{p}} \mathbf{t}$$

ullet Significance of mixing measurement (likelihood fit to ${\cal A}_f({
m t}))$

$$S = \sqrt{\frac{N\epsilon D^2}{2}} e^{-(\Delta m_s \sigma_t)^2/2} \sqrt{\frac{S}{S+B}}$$

$B_d\overline{B}_d$ Mixing Results (Winter 2003 conferences)

Although Δm_d is known to 1.4% accuracy , theoretical uncertainties due to $f_{B_d}\sqrt{B}_{B_d}=230\pm40$ MeV, dominate in the extraction of $|V_{td}|$

In measurements of $\Delta \mathrm{m}_d$, one generally assumes $rac{\Delta \Gamma}{\Gamma}=0$ and no CP, CPT violation

BaBar uses 88 Million $\Upsilon(4S) o B\overline{B}$ events to search for these effects

Current limits on Δm_s

ullet Another way to is to measure ${\mathcal A}$ for every value of ω

$$\mathcal{P}_{u,m}(t) = \frac{\Gamma_s e^{-\Gamma_s t}}{2} [1 \pm \mathcal{A} \cos(\omega t)]$$

- ullet If $\omega\ll \Delta {
 m M}_s~{\cal A}{=}0$, while at the true frequency $\omega = \Delta \mathrm{M}_s \; \mathcal{A}$ expected to be 1
- All values of the test frequency ω for which ${\cal A}+1.645\sigma_{\cal A}<1$ were excluded at the 95% CL $(\sigma_{\cal A}\sim 1/{\cal S})$
- Current limit $\Delta {
 m m}_s > 14.4 {
 m ps}^{-1}$ (Sensitivity was 19.3 ps $^{-1}$) Poorer result due to a "hint" of signal at 17 ps⁻¹ ($\approx 2.5\sigma$)
- ullet If we remove Δm_s from Unitarity triangle fits measurements prefer Δm_s around $15 \pm 4 \mathrm{ps}^{-1}$
- From UT fits, Standard Model upper limit $\Delta {
 m m}_s \le 31~{
 m ps}^{-1}$ at 95% CL

B_sB̄_s Mixing Results (Winter 2003 conferences)

Time-integrated mixing measurement

- For these measurements one chooses flavour specific final states
- $\chi_{d(s)}$ is defined as (assuming no CP violation in mixing),

$$\chi = \frac{x^2 + y^2}{2(x^2 + 1)}, \qquad x = \frac{\Delta m}{\Gamma}, y = \frac{\Delta \Gamma}{2\Gamma}$$

- \bullet ARGUS, CLEO measure $\chi_d=0.182\pm0.015$
- \bullet Combining with $\Delta \mathrm{m_d}$, get $\chi_d = 0.181 \pm 0.004$
- From high energy collider experiments, $\chi = \mathrm{f}_d \chi_d + \mathrm{f}_s \chi_s = 0.1884 \pm 0.0045$
- Combining $\chi_d,\overline{\chi}$ (and assuming $\chi_s=1/2$) with measured values of f_d ($\equiv f_u$), f_s , f_{baryon} allows us to tighten the errors on the fractions of b hadrons
- With this procedure,

$$\begin{aligned} &\mathbf{f}_d = (38.8 \pm 1.3\%) \text{ (measd. value} = (37.3 \pm 2.0)\%) \\ &\mathbf{f}_s = (10.6 \pm 1.3\%) \text{ (measd. value} = (13.9 \pm 3.8)\%) \\ &\mathbf{f}_{\mathrm{baryon}} = (11.8 \pm 2.0\%) \text{ (measd. value} = (11.5 \pm 2.0)\%) \end{aligned}$$

Limits on $\Delta\Gamma/\Gamma$

ullet CP violation in B mixing is small (mass pprox CP eigenstates)

$$\frac{\Delta\Gamma}{\Delta m} \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathcal{O}(0.01)$$

Previous BaBar result can be used to set a limit on $\Delta\Gamma_d/\Gamma_d$

- $\operatorname{sgn}(\operatorname{Re}\lambda_{CP})\Delta\Gamma/\Gamma = -0.008 \pm 0.037 \pm 0.018$ [-0.084,0.068]
- ullet λ_{CP} characterizes decays like ${\sf B}_d o {\sf Charmonium} + {\sf K}_{S(L)}^\circ$

Measure $\Delta\Gamma_s$ using

- Inclusive B_s decays which contain both components Fit with single exponential sensitive to $(\Delta\Gamma_s/\Gamma_s)^2$
- ullet $J/\Psi\Phi$ Can separate out CP even and odd states Transversity analysis
- ullet $\mathcal{B}(\mathrm{B}_s o \mathrm{D}_s^{(*)+}\mathrm{D}_s^{(*)-})$ is sensitive to $(\Delta \Gamma_s/\Gamma_s)$

68%, 95% and 99% CL 2D-contours (B WG 2003)

If Γ_s is constrained to $\Gamma_{\rm B^0}$ [$\tau({\rm B^0})=1.537\pm0.015$ ps] $\Delta\Gamma_s/\Gamma_s=0.07^{+0.09}_{-0.07},~95\%$ C.L. is [0,0.29]

If Δm_s is too large, $\Delta \Gamma_s$ might be observable

What's New at the Tevatron

For mixing, we need to tag the flavour of the B at production

$$\epsilon = \frac{N_{correct} + N_{wrong}}{N_{correct} + N_{wrong} + N_{notag}}$$
 $D = \frac{N_{correct}}{N_{correct}}$

$$D = \frac{N_{correct} - N_{wrong}}{N_{correct} + N_{wrong}}$$

- ullet ϵ , D are the efficiency and Dilution
- ullet Mixing measurements $\propto \epsilon \mathrm{D}^2$

D0 Runll Preliminary (use $B^+ o J/\Psi K^+$ data sample)

	Jet Tag	Muon Tag
Signal Region: ϵ	89.8 ± 0.89	$63.0 \pm 3.6\%$ $8.3 \pm 1.9\%$ *
Dilution	$15.8 \pm 8.3\%$	$15.8 \pm 8.3\%$ $ 44.4 \pm 21.1\%$
Sideband Region: ϵ	$65.8 \pm 2.4\%$	$65.8 \pm 2.4\%$ $8.5 \pm 1.6\%$ *
Dilution	$2.4 \pm 4.1\%$	Dilution $2.4 \pm 4.1\%$ $-3.7 \pm 19.2\%$
$\epsilon { m D}^2$ for signal	$2.4 \pm 1.7\%$	$3.3 \pm 1.8\%$

* Muon Tag efficiency includes semi-leptonic branching fraction Also tag using Pions and Kaons from fragmentation (and B^{**} states)

Final State reconstruction

$$\bullet \mathsf{B}_s \to \mathsf{D}_s^{(*)}(\mathsf{n}\pi)$$

- Good reconstruction efficiency
- Good proper time resolution
- Low branching fractions $\approx 0.4\%$

$$\bullet \ \mathsf{B}_s \to \mathsf{D}_s^{(*)} \mathsf{l} \nu$$

- Good reconstruction efficiency
- Poorer proper time resolution
- Large branching fractions pprox 6-10%

50

0

1.5

"Golden" mode for mixing

 $M(K^{-}\pi^{+}) GeV/c^{2}$

50

0

1.5

 $M(K^{-}\pi^{+}) GeV/c^{2}$

$$\mathcal{L} = 1 \text{pb}^{-1}$$

$$\approx 450 \text{ B} \to D^0 \mu \text{X/pb}^{-1}$$

$$\Rightarrow \approx 40 \text{ B}_s \to D_s \mu \text{X/pb}^{-1}$$

Sample Projections (D0)

$$B_s \to D_s^{(*)}\pi$$

Reconstruction eff. $\approx 15\%$
Trigger Eff. is $0.1/0.2\%$ single- μ triggers
Since each event has ≥ 1 muon, ϵD^2 is high
Total Number of reconstructed events:
(MC sample): 1300-1900
(includes trigger, reco efficiencies, ; \mathcal{L} 2 fb⁻¹)

$$B_s \to D_s^{(*)} \mu \nu$$

No. events extrapolated from $B \to D^0 \mu \nu$ data
Assume 20K on di- μ trigger
Infer proper time resolution from incl. B lifetime

Re-do with better tracking, Tracker and Silicon Triggers

Conclusions

- Impressive progress in measuring B-hadron lifetimes, $\Delta \mathrm{m}_d$ at B-factories, LEP and Tevatron experiments
- $-\Delta \mathrm{m}_d$ is measured to 1.4%
- $B^{0(+)}$ lifetimes are known to $\leq 1\%$
- B_s lifetime is known to 4%
- CDF and D0 have unique opportunity to extensively study B_s , B_c , B-baryons and measuring Δm_s