Branching Fractions (and Direct CPV) of Exclusive Hadronic B to Charm Decays

Malcolm John

LPNHE – Universités de Paris VI & VII

Flavour Physics and CP Violation

4th June 2003

Symbol indicates a reference. Listed at the end

Contents of the review

• This talk attempts to summarize some recent results from the B-factories

Color Suppression •

- $B \rightarrow D^0 \pi^0$
- $B \rightarrow D^0 \omega^0$
- $B \rightarrow D^0 \eta^0$

Working towards $2\beta + \gamma$

- $B \rightarrow D^* \pi$
- $B \rightarrow D_s \pi$
- $B \rightarrow D^0 K^0$

Looking forward to γ *

- $B \rightarrow D^0 K$
- $B \rightarrow D^0 K^*$
- $B \rightarrow D^{*0}K^*$
- $B \rightarrow D^{0}_{(CP)}K$

◆ For further examples of experimental probes of $B \rightarrow D$ physics see:

"B to charmonium decays and open charm production" - Karim Trabelsi (FPCP, 5th June)

* For a full discussion on the extraction of γ/ϕ_3 see:

"Reaching for gamma (present and future)" - Andrey Golutvin (FPCP, 3rd June)

Observing colour-suppressed modes and learning that they are not as suppressed as previously thought

$$\begin{array}{c} \mathsf{B}^{0} \longrightarrow \mathsf{D}^{(*)0} \ \pi^{0} \\ \mathsf{B}^{0} \longrightarrow \mathsf{D}^{(*)0} \ \omega \\ \mathsf{B}^{0} \longrightarrow \mathsf{D}^{(*)0} \ \eta \end{array}$$

- Naively, we expect a factor of (1/3)² between the colour-suppressed and colourfavoured rates
- However, a detailed calculation predicates a suppression of approximately 1/50
 - Factorization models, for example Neubert & Stech (1997) 1 predict very low branching fractions for colour-suppressed decays, in the range 0.3-0.7×10⁻⁴

- First Observation by BELLE (2001)
 - Yield extracted with a binned maximum likelihood in ΔE

- Followed in 2002 by CLEO with a confirmation of $D^0\pi^0$ and $D^{*0}\pi^0$
 - Signal extraction by extended likelihood fit over: m_{ES} , ΔE , a Fisher, cos θ_{HEL}

- Then Babar with the most accurate measurements on a large data set
 - Least-squares fit on the m_{ES} distribution for $B^0 \rightarrow D^0 \pi^0$
 - Unbinned max. likelihood on the m_{ES} distribution for $B^0 \rightarrow D^0 \omega$, $B^0 \rightarrow D^0 \eta$

4th June 2003, FPCP 2003, Paris

Working towards future $2\beta + \gamma$ analyses with rare B to charm processes

 $\begin{array}{c} \mathsf{B}^{0} \longrightarrow \mathsf{D}_{s}^{+}\pi^{-} \\ \mathsf{B}^{0} \longrightarrow \mathsf{D}_{s}^{-}\mathsf{K}^{+} \\ \mathsf{B}^{0} \longrightarrow \mathsf{D}^{0}\,\mathsf{K}^{(*)0} \end{array}$

Motivation for $B^0 \rightarrow D_s^+ \pi^-$

• Works towards a future measurement of $sin(2\beta+\gamma)$. Both $D^{(*)-}\pi^+$ and $D^{(*)+}\pi^-$ are assessable from a B⁰ or \overline{B}^0 . One is cabbibo suppressed and dependent on V_{ub}

- However, CP violating effect will be small $|\lambda^{(*)}| = \left| \frac{V_{ub}V_{cd}}{V_{cb}V_{ud}} \right| \approx 0.02$
- And |λ^(*)| cannot be extracted from data because each suppressed mode has a large background from the dominant

• BUT B⁰ \rightarrow D^{(*)+} π^- may be extracted from \mathcal{B} (B⁰ \rightarrow D_s^{(*)+} π^-) using SU(3) symmetry relations $\mathcal{B}_{(B^0 \to \overline{D}_{s}^{+}\pi^{-})} \approx \frac{\mathcal{B}_{(B^0 \to \overline{D}^{*+}\pi^{-})}}{\tan^2 \theta_{c}} \left(f_{D_{s}}^2 / f_{D^{*}}^2 \right) \lambda^2$ 5 $B^0 \rightarrow D_s^+ \pi^-$

- $sin(2\beta+\gamma)$ analyses from $B^0 \rightarrow D^{(*)-}\pi^+$ (+cc) are currently very statistics limited
 - However, expect first results [limits] soon followed but improvements as more modes are added ($B^0 \rightarrow D^{(*)-}\rho^+$, $B^0 \rightarrow D^{(*)-}a_1^+$) and the datasets grow

$B^0 \rightarrow D_s^- K^+$

$B^0 {\,\rightarrow\,} D^0 K^0_{\ \rm s}$, $B^0 {\,\rightarrow\,} D^0 K^{(*)0}$

- Two color-suppressed amplitudes with relative phase $2\beta+\gamma$
 - Comparable amplitudes potentially give large CP asymmetry (~40%)
 - Potential for a future measurement of $2\beta + \gamma$ with a time-dependent analysis
- The low expected rate means a time-dependent analysis is statistically challenging
 - Analysis made more interesting in light of the higher rate seen in colour-suppressed $B^0 \rightarrow D^0 \pi^0$ modes

$B^0 \mathop{\longrightarrow} D^0 K^0_{\ s}$, $B^0 \mathop{\longrightarrow} D^0 K^{(*)0}$

• Signal extracted with a likelihood fit to the ΔE

$$\mathcal{B}(B^0 \to D^0 K_s^0) = (5.0 \pm 1.3 \pm 0.6) \times 10^{-5}$$

 $\mathcal{B}(B^0 \to D^0 K^{*0}) = (4.8 \pm 1.1 \pm 0.5) \times 10^{-5}$

• Look forward to time-dependent analyses $(\sin(2\beta+\gamma))$ in the near future

First steps towards future γ analyses with B to charm processes

 $B^{-} \rightarrow D^{(*)0} K^{(*)-}$ $B^- \rightarrow D^0_{CP} K^-$

$B^{-} \rightarrow D^{0} K^{-}$

• Motivation: extract γ from interference of charged Bs decaying to common final states

- Important first step towards the measurement of γ .
 - b \rightarrow cūs are important modes for a future, theoretically clean method for extracting γ .
 - Extraction is possible even when the D⁰ decay is not a CP eigenstate. 11
 - However, this method uses interference of the colour-suppressed decay with the Cabibbo suppressed decay so it remains statistically very challenging... Perhaps 500ab⁻¹

$B^- \rightarrow D^0 K^- D^0 \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi$

15.3 fb⁻¹

75 fb⁻¹

(Preliminary)

BELLE

29 fb⁻¹

$B^- \rightarrow D^0 K^- D^0 \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi$

$B^- \rightarrow D^0 K^{*-} D^0 \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi$

• The same physics can be targeted with excited K*- states replacing the K-

• Signal extracted with a likelihood fit to the ΔE

 $\mathscr{B}(B^{-} \rightarrow D^{\circ}K^{*-}) = (5.4 \pm 0.6(\text{stat}) \pm 0.8(\text{sys})) \times 10^{-4}$

$B^- \rightarrow D^{*0} K^{*-} D^0 \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi$

- For the same reason, observing and then using $B \rightarrow D^{*0}K^{*}$ is also important.
 - Hot off the press from Babar

$B^{-} \rightarrow D^{0} K^{-} D^{0} \rightarrow \{CP\text{-eigenstate}\}$

We can also look for direct CP violation where the D⁰ decays to CP eigenstates

- Again, a statistically challenged analysis
 - Rate is suppressed (either by colour or cabbibo effects) for CP decays of the D⁰ w.r.t. non-CP decays (D \rightarrow K π ...)
 - CP violation effect is expected to be small
 - Assume DD mixing is negligible

$$\frac{\mathcal{B}(B^{-} \to D^{0}K^{-})}{\mathcal{B}(B^{-} \to \overline{D}^{0}\pi^{-})} \approx \left| \frac{a_{2}}{a_{1}} \right| \cdot \left| \frac{V_{ub}}{V_{cb}V_{*us}} \right| \approx 10\%$$

$B^{-} \rightarrow D^{0} K^{-} D^{0} \rightarrow \{CP\text{-eigenstate}\}$

Results are presented for CP = +1 : K⁺K⁻, $\pi^+\pi^-$ CP = -1 : K_s π^0 , K_s ϕ , K_s η , K_s ω , K_s η '

$B^{-} \rightarrow D^{0} K^{-} D^{0} \rightarrow \{CP\text{-eigenstate}\}$

• The asymmetry is expected to be small and, as yet, no CPV is seen

$$\mathcal{A}_{1,2} = \frac{\mathcal{B}(B^{-} \rightarrow D_{1,2}^{0} K^{-}) - \mathcal{B}(B^{+} \rightarrow D_{1,2}^{0} K^{+})}{\mathcal{B}(B^{-} \rightarrow D_{1,2}^{0} K^{-}) + \mathcal{B}(B^{+} \rightarrow D_{1,2}^{0} K^{+})}$$

$$\mathcal{R}_{1,2} = \frac{\mathcal{B}(B^{-} \to D_{1,2}^{0} K^{-}) / \mathcal{B}(B^{-} \to D_{1,2}^{0} \pi^{-})}{\mathcal{B}(B^{-} \to D_{D \to K\pi}^{0} K^{-}) / \mathcal{B}(B^{-} \to D_{D \to K\pi}^{0} \pi^{-})}$$

$$\mathcal{A}_{1,2} = \frac{2r\sin(\delta)\sin(\gamma)}{1+r^2+2r\cos(\delta)\cos(\gamma)}$$

$$\mathcal{R}_{1,2} = 1 + \gamma^2 + 2r\cos(\delta)\cos(\gamma)$$

 $r = \frac{\Gamma(\text{colour sup.})}{\Gamma(\text{colour allow.})}$ $\delta = \text{strong phase}$ $\gamma = \text{weak phase}$

1 internal relation

 $\mathcal{A}_{1}\mathcal{R}_{1}=-\mathcal{A}_{2}\mathcal{R}_{2}$

leaves 3 independent measurables for 3 unknowns (r, δ, γ) !

Summary of the review

Color Suppression

- Colour-suppressed modes have been observed and confirmed by all the B-factory experiments
- Colour suppression in $B \to D^0 \, X^0$ decays is not as strong as previously expected
- Good news for statistically-limited analyses using colour-suppressed modes

Working towards $2\beta + \gamma$

- >3 σ evidence for B \rightarrow D_s^{*} π ; a vital ingredient of 2 β + γ analyses of B \rightarrow D^(*) π
- First observation of the annihilation process $B- \rightarrow D_s^* K-$
- First observation of $B^0 \rightarrow D^0 K^0$; beginning of a new $2\beta + \gamma$ analysis

Looking forward to γ

- A lot of effort is being targeted at $B \rightarrow D_{(CP)}^{0} K$ decays. Several methods for extraction of γ
- The search direct CPV with exclusive hadronic B to charm decays is underway
- But we are definitely statistically limited so, as yet, no violation is seen
- Belle and Babar both currently approaching 150fb⁻¹ and aiming for 500fb⁻¹ in 2005,

Watch this space.....

References

Branching Fractions (and Direct CPV) of Exclusive Hadronic B to Charm Decays

References of results included in this talk

- Belle Collab., Phys. Rev. Lett. 88, 052002 (2002) or hep-ex/0109021
 - CLEO Collab., Phys.Rev.Lett.88 062001 (2002) or hep-ex/0110055
 - Babar Collab., hep-ex/0207092
 - Belle Collab., Belle-conf-0248
- Babar Collab., hep-ex/0211053
- Belle Collab., hep-ex/0212066
- Babar Collab., hep-ex/0207087
- Belle Collab., hep-ex/0304032
- CLEO Collab., hep-ex/0302026
- Belle Collab., Belle-conf-0236
- Babar Collab., PRL in draft
- CLEO Collab., Phys.Rev.Lett.**88** 1113002 (2002)

13

15

Other references (theory, phenomenology)

- M.Neubert & B.Stech, hep-ph/9705292, in "Heavy Flavors" ed. Buras & Lindner
 - I.Dunietz, Phys.Lett. **B 427**, 179 (1998)
- Chun-Khiang Chua, Wei-Shu Hou Phys.Rev. D 65, 096007 (2002)
 A.Deandrea & A.D.Polosa, Eur.Phys.J.C,677(2002)
- I.Dunietz, Phys. Lett. B270,75 (1991)
 J.H.Jang & P.Ko, Phys. Rev. D58, 111302 (1998)
 - D.Atwood, I.Dunietz & A.Soni, Phys.Rev.Lett. 78, 3257 (1997)
 - M.Gronau & D.Wyler, Phys.Lett. **B265**, 172 (1991)
 M.Gronau & D.London, Phys.Lett. **B253** 483 (1991)

BACK-UP SLIDES

B^0 and $B^{\pm} \rightarrow D^{(*)} D^{(*)} K$ $B^0 \rightarrow D^{(*)} \pi \pi$

Testing factorization with polarization measurements in B to vector-vector decays

Tests of factorization from $B \rightarrow D^* \rho^-$ and $B^- \rightarrow D^{*0} K^{*-}$

 Under the factorization hypothesis, B decays to vector mesons are analogous to semileptonic decays with a momentum transfer q² = M²_{LV}

Resolving charm counting questions with the high statistics from the B-factories

$B^0 \,and \,\, B^\pm \, {\longrightarrow} \,\, D^{(^*)} \, D^{(^*)} \, K$

$B^0 and B^{\pm} \rightarrow D^{(*)} D^{(*)} K$

- $\mathcal{B}(b \to c\bar{c}s)$ using $B \to D_s X$, (cc)X, $\Xi_c X$ (~15%) is too low to agree with observed semi-leptonic rates (~10%) of B decays
- The observation of a significant rate for 3-body $B \rightarrow D^{(*)} \overline{D}^{(*)} K$ processes validates solutions this long-standing problem of charm content of B decays

$B^0 \,and \,\, B^\pm \,{\longrightarrow}\,\, D^{(*)} \, D^{(*)} \, K$

		Branching	90% C.L.
	B decay	fraction	upper
	mode	(10^{-3})	limit (10^{-3})
	$B^0 ightarrow D^- D^0 K^+$	$1.7\pm0.3\pm0.3$	
	$B^0 ightarrow D^- D^{*0} K^+$	$4.6\pm0.7\pm0.7$	
	$B^0 ightarrow D^{st -} D^0 K^+$	$3.1^{+0.4}_{-0.3}\pm0.4$	
	$B^0 ightarrow D^{*-} D^{*0} K^+$	$11.8\pm1.0\pm1.7$	
	$B^0 ightarrow D^- D^+ K^0$	$0.8^{+0.6}_{-0.5}\pm 0.3$	< 1.7
	$B^0 ightarrow D^{*-} D^+ K^0 + { m CC}$	$6.5\pm1.2\pm1.0$	
	$B^0 ightarrow D^{st-} D^{st+} K^0$	$8.8^{+1.5}_{-1.4}\pm1.3$	
	$B^0 o \overline{D}^0 D^0 K^0$	$0.8\pm0.4\pm0.2$	< 1.4
	$B^0 ightarrow \overline{D}^0 D^{*0} K^0 + ext{CC}$	$1.7^{+1.4}_{-1.3}\pm 0.7$	< 3.7
C	$B^0 ightarrow \overline{D}^{*0} D^{*0} K^0$	$3.3^{+2.1}_{-2.0}\pm 1.4$	< 6.6
	$B^+ ightarrow \overline{D}^0 D^+ K^0$	$1.8\pm0.7\pm0.4$	< 2.8
	$B^+ o \overline{D}^{*0} D^+ K^0$	$4.1^{+1.5}_{-1.4}\pm0.8$	< 6.1
K	$B^+ ightarrow \overline{D}{}^0 D^{*+} K^0$	$5.2^{+1.0}_{-0.9}\pm 0.7$	
	$B^+ o \overline{D}^{*0} D^{*+} K^0$	$7.8^{+2.3}_{-2.1}\pm 1.4$	
—			
	$B^+ ightarrow \overline{D}{}^0 D^0 K^+$	$1.9\pm0.3\pm0.3$	
	$B^+ o \overline{D}^{*0} D^0 K^+$	$1.8^{+0.7}_{-0.6}\pm0.4$	< 3.8
	$B^+ ightarrow \overline{D}{}^0 D^{*0} K^+$	$4.7\pm0.7\pm0.7$	
$\rightarrow \rightarrow$	$B^+ o \overline{D}^{*0} D^{*0} K^+$	$5.3^{+1.1}_{-1.0}\pm 1.2$	
• <	$B^+ ightarrow D^- D^+ K^+$	$0.0\pm0.3\pm0.1$	< 0.4
ć	$B^+ ightarrow D^- D^{*+} K^+$	$0.2\pm0.2\pm0.1$	< 0.7
→	$B^+ ightarrow D^{*-} D^+ K^+$	$1.5\pm0.3\pm0.2$	
	$B^+ ightarrow D^{*-} D^{*+} K^+$	$0.9\pm0.4\pm0.2$	< 1.8

 $\mathcal{B}(B^{0} \to D^{(*)}D^{(*)}K) = (4.3 \pm 0.3 \pm 0.6) \times 10^{-2}$ $\mathcal{B}(B^{+} \to D^{(*)}D^{(*)}K) = (3.5 \pm 0.3 \pm 0.5) \times 10^{-2}$

- A significant measurement has been made for all decay types
- The total BRs show that B →DDK contributes significantly to the b →ccs rates
- The total ℬ(b →ccs) is ~23% which is lower than ~30% predicted by theory

Malcolm John

(Preliminary)

Exploring the resonant sub-structure of B-decays

 $B^- \rightarrow D^{(*)-} \pi^+ \pi^ B^0 \rightarrow D^{(*)+} K^- K^{(*)0}$ $B^- \rightarrow D^{(*)0} K^+ K_s^0$

Resonance structure - $B^- \rightarrow D^{(*)+} \pi^- \pi^-$

- Study of charmed meson production in B decays provides an opportunity to test Heavy Quark Effective Theory (HQET)
 - In the heavy quark limit, the heavy quark spin s_c decouples from the other degrees of freedom, so that the total momentum of the light quark $j_q = L + s_q$ is a good quantum number

Resonance structure - $B^- \rightarrow D^{(*)+} \pi^- \pi^-$

$B^0 \rightarrow D^{(*)+} K^- K^{(*)0}$, $B^{\pm} \rightarrow D^{(*)0} K^+ K_s^{-0}$

