Branching Fractions (and Direct CPV) of Exclusive Hadronic B to Charm Decays

Malcolm John

LPNHE - Universités de Paris VI \& VII
Flavour Physics and CP Violation
$4^{\text {th }}$ June 2003

Symbol indicates a reference. Listed at the end

Contents of the review

- This talk attempts to summarize some recent results from the B-factories

Color Suppression *

- $B \rightarrow D^{0} \pi^{0}$
- $B \rightarrow D^{0} \omega^{0}$
- $B \rightarrow D^{0} \eta^{0}$

Working towards $2 \beta+\gamma$

- $B \rightarrow D^{*} \pi$
- $B \rightarrow D_{s} \pi$
- $B \rightarrow D^{0} K^{0}$

Looking forward to γ^{*}

- B \rightarrow D K
- $B \rightarrow D^{0} K^{*}$
- $B \rightarrow D^{* 0} K^{*}$
- $B \rightarrow D^{0}{ }_{(C P)} K$
* For further examples of experimental probes of $B \rightarrow D$ physics see:
"B to charmonium decays and open charm production" - Karim Trabelsi (FPCP, $5^{\text {th }}$ June)
* For a full discussion on the extraction of γ / ϕ_{3} see:
"Reaching for gamma (present and future)" - Andrey Golutvin (FPCP, 3rd June)

Observing colour-suppressed modes and learning that they are not as suppressed as previously thought

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \mathrm{D}^{(+) 0} \pi^{0} \\
& \left.\mathrm{n}^{0} \rightarrow \mathrm{D}^{0}+\right)^{(+)} \omega \\
& \mathrm{B}^{0} \rightarrow \mathrm{D}^{(1) 0} \eta
\end{aligned}
$$

Colour-suppressed B ${ }^{0}$ Decays

- Naively, we expect a factor of $(1 / 3)^{2}$ between the colour-suppressed and colourfavoured rates
- However, a detailed calculation predicates a suppression of approximately $1 / 50$
- Factorization models, for example Neubert \& Stech (1997) 1 predict very low branching fractions for colour-suppressed decays, in the range $0.3-0.7 \times 10^{-4}$

Colour-suppressed B0 Decays

- First Observation by BELLE (2001)
- Yield extracted with a binned maximum likelihood in $\Delta \mathrm{E}$

Colour-suppressed B0 Decays

- Followed in 2002 by CLEO with a confirmation of $\mathrm{D}^{0} \pi^{0}$ and $\mathrm{D}^{* 0} \pi^{0}$
- Signal extraction by extended likelihood fit over: $m_{E S}, \Delta E$, a Fisher, $\cos \theta_{\text {HEL }}$

Colour-suppressed B0 Decays

- Then Babar with the most accurate measurements on a large data set
- Least-squares fit on the m_{ES} distribution for $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \pi^{0}$
- Unbinned max. likelihood on the m_{ES} distribution for $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \omega, \mathrm{~B}^{0} \rightarrow \mathrm{D}^{0} \eta$

Colour-suppressed B ${ }^{0}$ Decays

- Results are consistently approximately a factor 4 higher than predicted by factorization

Yield Branching fraction ($\times 10^{-4}$) Prediction ($\times 10^{-4}$)

$$
\begin{aligned}
& \overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}^{0} \pi^{0} \begin{array}{cccc}
\mathrm{B} & 126 \pm 20 & 3.1 \pm 0.4 \pm 0.5 \\
& 124 \pm 15 & 2.74 \pm 0.36 & \pm 0.55 \\
& 291 \pm 31 & 2.89 \pm 0.29 \pm 0.38
\end{array} \\
& \overline{\mathrm{~B}}^{0} \rightarrow \mathrm{D}^{0} \eta \quad \overline{\mathcal{B}} \quad 22 \pm 9 \quad 1.4 \pm 0.5 \pm 0.3 \\
& \begin{array}{cclll}
\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}^{0} \omega & \mathrm{~B} & 33 \pm 11 & 1.8 \pm 0.8 \pm 0.4 \\
& \text { Bin } & 78 \pm 12 & 2.48 \pm 0.40 \pm 0.32
\end{array} \\
& \begin{array}{lllll}
\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}^{*} \pi^{0} & \text { B } & 26 \pm 9 & 2.7 \pm 0.8 & \pm 0.6 \\
& \text { R } & 29 \pm 7 & 2.20 \pm 0.59 & \pm 0.79
\end{array} \\
& \overline{\mathrm{~B}}^{0} \rightarrow \mathrm{D}^{* 0} \eta \quad \text { B } \quad 8 \pm 4 \quad<4.6 \\
& \overline{\mathrm{~B}}^{0} \rightarrow \mathrm{D}^{* 0} \omega \quad \text { B } \quad 16 \pm 9 \quad<7.9
\end{aligned}
$$

$21.3 \mathrm{fb}^{-1}$
\square
$9.15 \mathrm{fb}^{-1}$

Working towards future $2 \beta+\gamma$ analyses with rare B to charm processes

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{-} \\
& \mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-\mathrm{K}^{+}} \\
& \mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{(H) 0}
\end{aligned}
$$

Motivation for $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{-}$

- Works towards a future measurement of $\sin (2 \beta+\gamma)$. Both $D^{(*)}-\pi^{+}$and $D^{()^{+}+} \pi^{-}$are assessable from a B^{0} or $\overline{\mathrm{B}}^{0}$. One is cabbibo suppressed and dependant on V_{ub}

Dominant

- However, CP violating effect will be small

$$
\left|\lambda^{(*)}\right|=\left|\frac{V_{\mathrm{ub}} V_{\mathrm{cd}}}{V_{\mathrm{cb}} V_{\mathrm{ud}}}\right| \approx 0.02
$$

- And $\left|\lambda^{(*)}\right|$ cannot be extracted from data

Suppressed

$$
V_{c b} V_{u d}=A
$$

because each suppressed mode has a
 large background from the dominant

- BUT $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(4)+} \pi^{-}$may be extracted from $\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{\left({ }^{*}+\right.} \pi^{-}\right)$using $\mathrm{SU}(3)$ symmetry relations

$$
\mathscr{B}\left(\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}_{\mathrm{s}}^{+} \pi^{-}\right) \approx \frac{\mathscr{B}\left(\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{*+} \pi\right)}{\tan ^{2} \theta_{\mathrm{c}}}\left(f_{\mathrm{D}}^{2} / f_{\mathrm{D}^{*}}^{2}\right) \lambda^{2}
$$

- $\sin (2 \beta+\gamma)$ analyses from $B^{0} \rightarrow D^{\left({ }^{*}\right)}-\pi^{+}(+c c)$ are currently very statistics limited
- However, expect first results [limits] soon followed but improvements as more modes are added $\left(B^{0} \rightarrow D^{(t)-} \rho^{+}, B^{0} \rightarrow D^{\left({ }^{(}\right)-} a_{1}+\right)$ and the datasets grow
- A search for the kinematically similar $\left.\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(}\right)$- K^{+} has also been performed
- $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(1)-} \mathrm{K}^{+}$can only proceed through W exchange (or final state rescattering). Theory estimates the $B R$ between $10^{-6}-10^{-4}$

Branching fraction (x 10^{-5})

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{S}}^{+} \mathrm{K}^{-} \quad \begin{aligned}
& 4.6 \pm 1.2 \pm 1.3 \\
& 3.2 \pm 1.0 \pm 1.0
\end{aligned}
$$

\longleftarrow
$.4 \sigma$
3.5σ

$\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}_{\mathrm{s}}^{0}, \mathrm{~B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{\left.()^{0}\right)}$

Interference between identical states

- Two color-suppressed amplitudes with relative phase $2 \beta+\gamma$
- Comparable amplitudes potentially give large CP asymmetry ($\sim 40 \%$)
- Potential for a future measurement of $2 \beta+\gamma$ with a time-dependant analysis

- The low expected rate means a time-dependent analysis is statistically challenging
- Analysis made more interesting in light of the higher rate seen in colour-suppressed $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \pi^{0}$ modes

$\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}_{\mathrm{s}}^{0}, \mathrm{~B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{(*) 0}$

- Signal extracted with a likelihood fit to the $\Delta \mathrm{E}$

- Look forward to time-dependant analyses $(\sin (2 \beta+\gamma))$ in the near future

First steps towards future γ analyses with B to charm processes

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{D}^{(+5)} \mathrm{K}^{\left({ }^{(}\right)-} \\
& \mathrm{B} \rightarrow \mathrm{D}^{0}{ }_{\mathrm{CP}} \mathrm{~K}^{-}
\end{aligned}
$$

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}$

- Motivation: extract γ from interference of charged Bs decaying to common final states

- Important first step towards the measurement of γ.
- $b \rightarrow$ cūs are important modes for a future, theoretically clean method for extracting γ.
- Extraction is possible even when the D^{0} decay is not a CP eigenstate. (11)
- However, this method uses interference of the colour-suppressed decay with the Cabibbo suppressed decay so it remains statistically very challenging... Perhaps 500ab-1

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-} \quad \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}, \mathrm{~K} \pi \pi \pi$

$$
\mathrm{R}=\frac{\mathcal{B}\left(B^{ \pm} \rightarrow D^{0} K^{ \pm}\right)}{\mathcal{B}\left(B^{ \pm} \rightarrow D^{0} \pi^{ \pm}\right)}
$$

$\mathrm{R}=(8.31 \pm 0.35 \pm 0.20) \%$
[weighted result over 3 modes]
$\mathrm{R}=(7.9 \pm 0.9 \pm 0.6) \%$ 恩
$\mathrm{R}=(9.9 \pm 1.3 \pm 0.7) \%$ (

- So approx. $\operatorname{BR}(B-\rightarrow D O K-)=4.3 \times 10^{-4}$

$15.3 \mathrm{fb}^{-1}$

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-} \quad \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}, \mathrm{~K} \pi \pi \pi$

$$
\mathrm{R}=\frac{\mathcal{B}\left(B^{ \pm} \rightarrow D^{0} K^{ \pm}\right)}{\mathcal{B}\left(B^{ \pm} \rightarrow D^{0} \pi^{ \pm}\right)}
$$

(Preliminary)

$$
\mathrm{R}=(8.31 \pm 0.35 \pm 0.20) \%
$$

[weighted result over 3 modes]
$\mathrm{R}=(7.9 \pm 0.9 \pm 0.6) \%$
$\mathrm{R}=(9.9 \pm 1.3 \pm 0.7) \%$

- So approx. $\operatorname{BR}(\mathrm{B}-\rightarrow \mathrm{DO}$ K- $)=4.3 \times 10^{-4}$

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*-} \quad \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}, \mathrm{~K} \pi \pi \pi$

- The same physics can be targeted with excited K^{*} - states replacing the K -

$\cos \theta_{\text {HEL }}$ form from polarized pseudoscalar to pseudoscalarvector decay

- Signal extracted with a likelihood fit to the $\Delta \mathrm{E}$

$$
\mathscr{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}\right)=\quad\left(5.4 \pm 0.6(\text { stat) } \pm 0.8(\text { sys })) \times 10^{-4}\right.
$$

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{*} \quad \mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} \pi \pi^{0}, \mathrm{~K} \pi \pi \pi$

- For the same reason, observing and then using $\mathrm{B}-\rightarrow \mathrm{D}^{*} \mathrm{~K}^{*}$ - is also important.
- Hot off the press from Babar

Compares well with CLEO (2001) result $\quad\left(7.7 \pm 2.2\right.$ (stat) ± 2.6 (sys)) $\times 10^{-4}$ 回
$81.2 \mathrm{fb}^{-1}$

$\mathrm{B}^{\mathrm{B}} \rightarrow \mathrm{D}^{0} \mathrm{~K}-\mathrm{D}^{0} \rightarrow\{\mathrm{CP}$-eigenstate $\}$

- We can also look for direct CP violation where the D^{0} decays to CP eigenstates

- Again, a statistically challenged analysis
- Rate is suppressed (either by colour or cabbibo effects) for CP decays of the D^{0} w.r.t. non-CP decays ($\mathrm{D} \rightarrow \mathrm{K} \pi \ldots$...)
- CP violation effect is expected to be small
- Assume $\bar{D} \bar{D}$ mixing is negligible $\frac{\mathscr{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right)}{\mathscr{B}\left(\mathrm{B}^{-} \rightarrow \overline{\mathrm{D}}^{0} \pi^{-}\right)} \approx\left|\frac{\mathrm{a}_{2}}{\mathrm{a}_{1} \mid}\right|\left|\frac{\mathrm{V}_{\mathrm{ub}}}{\mathrm{V}_{\mathrm{cb}} \mathrm{V}^{*}{ }_{\mathrm{us}}}\right| \approx 10 \%$ colour suppression term

$\mathrm{B} \rightarrow \mathrm{D}^{0} \mathrm{~K}-\mathrm{D}^{0} \rightarrow\{$ CP-eigenstate $\}$

Results are presented for $\mathrm{CP}=+1: \mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-} \quad \mathrm{CP}=-1: \mathrm{K}_{\mathrm{s}} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \phi, \mathrm{K}_{\mathrm{s}} \eta, \mathrm{K}_{\mathrm{s}} \omega, \mathrm{K}_{\mathrm{s}} \eta^{\prime}$

$78 \mathrm{fb}^{-1}$
13
(Preliminary)
$D \rightarrow K \pi$
$\left(\right.$ or $\left.D_{f}\right)$

$B^{-} \rightarrow D^{0} K^{-} \quad D^{0} \rightarrow\{C P-e i g e n s t a t e\}$

- The asymmetry is expected to be small and, as yet, no CPV is seen

$$
\begin{aligned}
& \mathcal{A}_{1,2}=\frac{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{1,2}^{0} \mathrm{~K}^{-}\right)-\mathcal{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{D}_{\mathrm{l}, 2}^{0} \mathrm{~K}^{+}\right)}{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{l}, 2}^{0} \mathrm{~K}^{-}\right)+\mathscr{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{D}_{\mathrm{l}, 2}^{0} \mathrm{~K}^{+}\right)} \\
& \mathcal{A}_{1,2}=\frac{2 r \sin (\delta) \sin (\gamma)}{1+r^{2}+2 r \cos (\delta) \cos (\gamma)} \\
& \mathcal{R}_{1,2}=\frac{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{1,2}^{0} \mathrm{~K}\right) / \mathscr{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{1,2}^{0} \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{D} \rightarrow \mathrm{~K}, ~}^{0} \mathrm{~K}\right) / \mathscr{B}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{D} \rightarrow \mathrm{~K} \pi}^{0} \pi^{-}\right)} \\
& \mathbb{R}_{1,2}=1+r^{2}+2 r \cos (\delta) \cos (\gamma) \\
& \mathcal{A}_{2}=-0.19 \pm 0.17 \text { (stat) } \pm 0.05 \text { (syn) } \\
& R_{2}=1.41 \pm 0.27 \text { (stat) } \pm 0.15 \text { (sos) } \\
& \text { leaves } 3 \text { independent } \\
& \text { measurable for } 3 \\
& \text { unknowns }(r, \delta, \gamma) \text { ! } \\
& \text { (Preliminary) }
\end{aligned}
$$

Summary of the review

Color Suppression

- Colour-suppressed modes have been observed and confirmed by all the B-factory experiments
- Colour suppression in $B \rightarrow D^{0} X^{0}$ decays is not as strong as previously expected
- Good news for statistically-limited analyses using colour-suppressed modes

Working towards $2 \beta+\gamma$

- $\quad>3 \sigma$ evidence for $B \rightarrow D_{s}{ }^{*} \pi$; a vital ingredient of $2 \beta+\gamma$ analyses of $B \rightarrow D^{(*)} \pi$
- First observation of the annihilation process $\mathrm{B}-\rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~K}$ -
- First observation of $B^{0} \rightarrow D^{0} K^{0}$; beginning of a new $2 \beta+\gamma$ analysis

Looking forward to γ

- A lot of effort is being targeted at $B \rightarrow D_{(C P)}{ }^{0} K$ decays. Several methods for extraction of γ
- The search direct CPV with exclusive hadronic B to charm decays is underway
- But we are definitely statistically limited so, as yet, no violation is seen
- Belle and Babar both currently approaching $150 \mathrm{fb}^{-1}$ and aiming for $500 \mathrm{fb}^{-1}$ in 2005 ,

Watch this space.....

References

Branching Fractions (and Direct CPV) of Exclusive Hadronic B to Charm Decays

References of results included in this talk

2

- Belle Collab., Phys. Rev. Lett. 88, 052002 (2002) or hep-ex/0109021
- CLEO Collab., Phys.Rev.Lett. 88062001 (2002) or hep-ex/0110055
- Babar Collab., hep-ex/0207092
- Belle Collab., Belle-conf-0248
- Babar Collab., hep-ex/0211053
- Belle Collab., hep-ex/0212066
- Babar Collab., hep-ex/0207087
- Belle Collab., hep-ex/0304032
- CLEO Collab., hep-ex/0302026
- Belle Collab., Belle-conf-0236
- Babar Collab., PRL in draft
- CLEO Collab., Phys.Rev.Lett. 881113002 (2002)

Other references (theory, phenomenology)

- M.Neubert \& B.Stech, hep-ph/9705292, in "Heavy Flavors" ed. Buras \& Lindner
- I.Dunietz, Phys.Lett. B 427, 179 (1998)
- Chun-Khiang Chua, Wei-Shu Hou Phys.Rev. D 65, 096007 (2002)
A.Deandrea \& A.D.Polosa, Eur.Phys.J.C,677(2002)
- I.Dunietz, Phys. Lett. B270,75 (1991)
J.H.Jang \& P.Ko, Phys. Rev. D58, 111302 (1998)
- D.Atwood, I.Dunietz \& A.Soni, Phys.Rev.Lett. 78, 3257 (1997)
- M.Gronau \& D.Wyler, Phys.Lett. B265, 172 (1991) M.Gronau \& D.London, Phys.Lett. B253 483 (1991)

BACK-UP SLIDES

B^{0} and $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{(*)} \mathrm{K}$ $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)} \pi \pi$

Testing factorization with polarization measurements in B to vector-vector decays

Tests of factorization from $\mathrm{B} \rightarrow \mathrm{D}^{*} \rho^{-}$and $\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{*-}$

- Under the factorization hypothesis, B decays to vector mesons are analogous to semileptonic decays with a momentum transfer $\mathrm{q}^{2}=\mathrm{M}^{2}{ }_{\mathrm{fv}}$

$B^{-} \rightarrow D^{*} \rho^{-}$
$B^{0} \rightarrow D^{*} \rho^{-}$

$$
\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{*}-
$$

$$
\frac{\Gamma_{L}}{\Gamma}=0.86 \pm 0.06 \pm 0.03
$$

$$
\begin{aligned}
& \mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \rho \rho^{-} \\
& \frac{\Gamma_{L}}{\Gamma}=0.892 \pm 0.018 \pm 0.016
\end{aligned}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \rho^{-}
$$

$$
\frac{\Gamma_{L}}{\Gamma}=0.885 \pm 0.016 \pm 0.012
$$

Resolving charm counting questions with the high statistics from the B-factories

B^{0} and $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{(*)} \mathrm{K}$

B^{0} and $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{(*)} \mathrm{K}$

- $\quad \mathscr{B}(b \rightarrow c \bar{c} s)$ using $B \rightarrow D_{s} X,(c c) X, \Xi_{c} X(\sim 15 \%)$ is too low to agree with observed semi-leptonic rates ($\sim 10 \%$) of B decays
- The observation of a significant rate for 3-body $B \rightarrow D^{()} \bar{D}^{(*)} K$ processes validates solutions, this long-standing problem of charm content of B decays

B^{0} and $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{\left({ }^{*}\right)} \mathrm{D}^{(*)} \mathrm{K}$

Exploring the resonant sub-structure of B-decays

$$
\begin{aligned}
& B \rightarrow D^{(+)}-\pi^{+} \pi^{-} \\
& B^{0} \rightarrow D^{\left({ }^{(+)}+K^{-}-K^{*}\right) 0} \\
& B \rightarrow D^{(+10} K^{+} K_{s}^{0}
\end{aligned}
$$

Resonance structure $-\mathrm{B}^{-} \rightarrow \mathrm{D}^{()^{+}+} \pi^{-} \pi^{-}$

- Study of charmed meson production in B decays provides an opportunity to test Heavy Quark Effective Theory (HQET)
- In the heavy quark limit, the heavy quark spin s_{c} decouples from the other degrees of freedom, so that the total momentum of the light quark $\mathrm{j}_{\mathrm{q}}=\mathrm{L}+\mathrm{s}_{\mathrm{q}}$ is a good quantum number

Resonance structure $-\mathrm{B}^{-} \rightarrow \mathrm{D}^{()^{+}+} \pi^{-} \pi^{-}$

(Preliminary)
$\mathscr{B}\left(B^{-} \rightarrow D_{2}^{* 0} \pi^{-}\right) \times \mathscr{B}\left(D_{2}^{* 0} \rightarrow D^{-} \pi^{+}\right)=(3.5 \pm 0.3 \pm 0.5) \times 10^{-4}$
$\mathscr{B}\left(B^{-} \rightarrow D_{0}^{* 0} \pi^{-}\right) \times \mathscr{B}\left(D_{0}^{* 0} \rightarrow D^{-} \pi^{+}\right)=(5.5 \pm 0.5 \pm 0.8) \times 10^{-4}$
$\mathscr{B}\left(B^{-} \rightarrow D_{1} \pi^{-}\right) \times \mathscr{B}\left(D_{1} \rightarrow D^{*-} \pi^{+}\right)=(6.2 \pm 0.5 \pm 1.1) \times 10^{-4}$
$\mathscr{B}\left(B^{-} \rightarrow D_{2}^{* 0} \pi^{-}\right) \times \mathscr{B}\left(D_{2}^{* 0} \rightarrow D^{*-} \pi^{+}\right)=(2.0 \pm 0.3 \pm 0.5) \times 10^{-4}$
$\mathscr{B}\left(B^{-} \rightarrow D_{1}^{* 0} \pi^{-}\right) \times \mathscr{B}\left(D_{1}^{* 0} \rightarrow D^{*-} \pi^{+}\right)=(4.1 \pm 0.5 \pm 0.8) \times 10^{-4}$
$\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)+} \mathrm{K}^{-} \mathrm{K}^{(*) 0}, \mathrm{~B}^{ \pm} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~K}^{+} \mathrm{K}_{\mathrm{s}}^{0}$

Decay modes	Br. fractions, upper limits $\left(10^{-4}\right)$	Signif. σ
$B^{-} \rightarrow D^{0} K^{-} K^{* 0}$	$7.5 \pm 1.3 \pm 1.1$	8.0
$B^{0} \rightarrow D^{+} K^{-} K^{* 0}$	$8.8 \pm 1.1 \pm 1.5$	10.4
$B^{-} \rightarrow D^{* 0} K^{-} K^{* 0}$	$15.3 \pm 3.1 \pm 2.9$	6.7
$\bar{B}^{0} \rightarrow D^{*+} K^{-} K^{* 0}$	$12.9 \pm 2.2 \pm 2.5$	9.5
$B^{-} \rightarrow D^{0} K^{-} K^{0}$	$5.5 \pm 1.4 \pm 0.8$	5.5

"The observed behaviour can be interpreted as the production of an intermediate $\mathrm{a}_{1}(1260)$ resonance that decays to $\mathrm{K}^{-} \mathrm{K}_{\mathrm{s}}{ }^{0}$."

