Branching Fractions and Direct CP Violation Measurements in B → PP(PV)

Marcella Bona マルチェラ ボナ INFN and Università di Torino

Flavour Physics & CP Violation Paris, June 4th, 2003

2

CP violation in the Standard Model (SM):

- CP symmetry can be violated in any field theory with at least one irremovable phase in the Lagrangian
- This condition is satisfied in the SM through the three-generation CKM quark-mixing matrix $(V_{ud} \ V_{us} \ V_{ub})$

Unitarity Triangle: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $\begin{cases}
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{cases}$ $\begin{cases}
0 \rightarrow \pi\pi, \rho\pi \\
(\Phi_2) \qquad V_{td}V_{tb}^* \\
(\Phi_3) \qquad \beta(\Phi_1) \qquad Sin 2\beta_{WA} = 0.734 \pm 0.055
\end{cases}$ What about $\alpha(\phi_2)$? (H. Sagawa's talk) from α_{eff} : isospin triangle analysis

- **The decays B** $\rightarrow \pi^+\pi^-$, $\pi^+\pi^0$, $\pi^0\pi^0$ are related by isospin
- **a** $\pi\pi$ states can have I = 2 or I = 0
 - **a** gluonic penguins only contribute to I = 0 ($\Delta I = 1/2$)
 - $\Rightarrow \pi^+\pi^0$ is a pure I = 2 (Δ I = 3/2) so it has only tree amplitude

And finally $\gamma(\phi_3)$ (A. Golutvin's talk)

 $\rightarrow \gamma$ is the weak phase difference between

 $\mathbf{b} \rightarrow \mathbf{u} \ \mathbf{tree}$ and $\mathbf{b} \rightarrow \mathbf{s} \ \mathbf{penguin}$ amplitudes

- comparable tree and penguin contributions
 facilitate sensitivity to γ
- Challenges:
 - Strong phases
 - Electroweak penguins (EWP)
 - Rescattering
- All two-body modes are useful:
 - K π , K^{*} π , K ρ : sensitivity to γ
 - $\rightarrow \pi \pi: \mathbf{A}(\pi^+ \pi^0) \sim \mathbf{pure tree} \rightarrow \mathbf{A}_{\mathbf{CP}} \sim \mathbf{0}$

→ cross-check for the EWP suppression

KK: constraints on rescattering

Direct CP violation:

- both charged and neutral Bs
- tagging is not always necessary
 - charged and self-tagging modes
 - higher efficiency

interesting modes

- for new physics search:
- **Κ**⁰*π*+: pure penguin
- **\mathbf{I}** $\mathbf{K}^{0}\pi^{0}$: color suppressed tree
- ~ 0 asymmetry expected in the SM
- interference between (at least) two amplitudes

leading to the same final state

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

the measured asymmetry is:

$$\mathrm{A_{CP}}\equivrac{|ar{A}_{ar{f}}|^2-|A_f|^2}{|ar{A}_{ar{f}}|^2+|A_f|^2}\sim \sum\limits_{i,j}a_i\,a_j\sin[\phi_i-\phi_j]\sin[\delta_i-\delta_j)$$

 ϕ_i : weak phase

CP-odd

 δ_i : strong phase

CP-even

Analysis overview:

Features of the analyses:

- \clubsuit event selection: exclusive B reconstruction (m_{ES} and ΔE)
- high background from continuum
 - continuum suppression based on topological information
 - cross-feed from other **B** decays for $\pi^0(\rho)$ modes
- → crucial K/ π separation: excellent particle identification needed to distinguish among various final states
 - Cleo and Belle: cut on a likelihood (dE/dx + Cherenkov angle)
 - BaBar: include the Cherenkov angle measurement in the maximum likelihood (ML) fit
- finally to separate signal from light-quark background:
 - maximum likelihood fit (Cleo and BaBar)
 - ♦ ΔE fit (Belle)

Event selection:

Where a construct a select B candidates with m_{ES} and ΔE

 e^+

Continuum suppression (I):

spherical B events vs jet-like continuum

- several techniques exploiting event topology or angular distribution
 - selection cuts on:
 - **Fox-Wolfram moments**
 - \blacksquare sphericity, $\cos \theta_{\rm S}$ ~
 - **B** direction (cos $\theta_{\rm B}$)
 - build Fisher discriminants:
 - to be included in a likelihood variable to cut on (Belle)
 - to be included in the <u>of the</u> maximum likelihood fit (Cleo and BaBar)

angle between the sphericity axis of the B and the sphericity axis of the rest of the event

e

e

Marcella Bona, INFN Torino

K/ π separation:

Cleo:

Cherenkov angle from RICH

- + dE/dx from the drift chamber together in a χ^2 to cut on
- misidentification: 11% kaons as pions
 (8% pions as kaons) @ 2.6 GeV/c

➡ BaBar:

- Cherenkov angle from the DIRC
- $= \theta_{\rm C}$ included in the ML fit
- rightarrow separation: 4 σ @ 3 GeV/c

Belle:

- Cherenkov angle from the ACC
 - + dE/dx from the drift chamber
- **v** cut on the likelihood ratio $L_K/(L_\pi+L_K)$

Branching Ratio (BR) results: h^+h^- with $h=\pi$, K

QCD factorization and present results:

The other sides of the isospin triangles: BR results for $\pi^{\pm}\pi^{0}$ and $\pi^{0}\pi^{0}$

mode	BR (10 ⁻⁶) [UL @ 90% CL]			
	Cleo	BaBar	Belle	WA
$B^+ o \pi^+ \pi^0$	$4.6\substack{+1.8+0.6\\-1.6-0.7}$	$5.5^{+1.0}_{-0.9}\pm0.6$	$5.3\pm1.3\pm0.5$	5.3 ± 0.8
$B^0 o \pi^0 \pi^0$	< 4.4	< 3.6	< 4.4	< 3.6
[≥] fit r	egion	1	5 00	\mathcal{B}

With an upper limit on the BR($\pi^0\pi^0$):

CP-violating asymmetries in B $\rightarrow \rho^+ \pi^-$

- in principle: direct measurement of α with the full three-body Dalitz plot analysis [A. Snyder, H. Quinn]
- **a** but: much more difficult than in the $\pi\pi$ case
 - three-body topology with a neutral pion:
 huge combinatorics, lower efficiency
 high background from other B decays
- for the time being a quasi two-body analysis has been performed:
 - **\Rightarrow** selection of the ho-dominated
 - Dalitz plane region
 - use of multivariate techniques to suppress light quark bkg
 - **i** fit for $\rho^+\pi^-$, $\rho^+\mathbf{K}^-$ at the same time

Branching fraction results B $\rightarrow \rho^+ \pi^-$:

Marcella Bona, INFN Torino

Trying the isospin triangle analysis for $\rho\pi$:

○ on 500 fb⁻¹ with the current WA BRs, C and S values and BR(B⁰ → $\rho^0 \pi^0$) = 0.9 · 10⁻⁶

 \bigcirc not much sensitivity to α

assume BR(B⁰ → ρ⁰π⁰) to be
 below experimental sensitivity:
 → improved constraints,
 → SU(2) analysis gives meaningful

constraints on α above 2 ab⁻¹

What's left? $\mathbf{K}^*\pi$ and $\rho \mathbf{K}$...

- $\mathbf{A} \mathbf{K}^* \pi$ and $\rho \mathbf{K}$:
 - \clubsuit same physics as $K\pi$
 - \Rightarrow sensitivity to γ ?

mode	BR	(10^{-6}) [UL @ 909]	% CL] 🛛 🎅
	쭏 Cleo	BaBar	Belle Selle
$B^0 o ho^+ K^-$	$16^{+8}_{-6}\pm 3$	$7.3^{+1.3.}_{-1.2}\pm 1.2$	$16\pm5^{+2}_{-3}$
$B^+ o ho^0 K^+$	< 17	<u>~</u> < 29	< 12
$B^+ o ho^+ K^0$	< 48	<u> </u>	—
$B^0 o ho^0 K^0$	< 39		< 12
$B^0 o K^{*+} \pi^-$	$16^{+6}_{-5}\pm 2$	_	< 30
$B^+ o K^{*0} \pi^+$	$7.6^{+3.5}_{-3.0}\pm1.6$	$15.5\pm3.4\pm1.8$	$19.4\substack{+4.2+2.1+3.5\\-3.9-2.1-6.8}$
$B^+ o K^{*+} \pi^0$	< 31	—	—
$B^0 o K^{*0} \pi^0$	< 3.6	—	—

Asymmetry measurements:

Summary and conclusions:

Charmless two-body PP decays: the picture is getting clearer penguins don't seem to be negligible: $K\pi$ vs $\pi\pi$

the inputs for the isospin triangle analysis (IA) are starting to be usable:

 $ightarrow \pi^+ \pi^0$ has been measured

→ still an upper limit on $\pi^0 \pi^0 \Rightarrow$ if high BR, IA not feasible?

too early for a significant constraint

Charmless PV decays:

 $rightarrow
ho^+ \pi^0$ and $ho^0 \pi^0$ still missing for the IA

full Dalitz plot analysis on its way

more missing pieces in the K^{*} land

next years will be really interesting

most measurements are statistically limited

exciting times for angles and direct asymmetries