Branching Fractions and Direct CP Violation Measurements in $\mathbf{B} \rightarrow \mathbf{P P}(\mathbf{P V})$

Marcella Bona
マルチェラ ボナ
INFN and Università di Torino

Flavour Physics \＆CP Violation
Paris，June 4th， 2003

CP violation in the Standard Model (SM):

3 CP symmetry can be violated in any field theory with at least one irremovable phase in the Lagrangian
0 This condition is satisfied in the SM through the three-generation CKM quark-mixing matrix
Unitarity Triangle:
$V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

$$
\left(\begin{array}{lll}
\boldsymbol{V}_{u d} & V_{u s} & V_{u b} \\
\boldsymbol{V}_{c d} & V_{c s} & V_{c b} \\
\boldsymbol{V}_{\boldsymbol{t d}} & \boldsymbol{V}_{t s} & V_{t b}
\end{array}\right)
$$

$\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}^{*}$

$$
\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}
$$

- The angles are related to CP-violating asymmetries in specific B decays
0 already good precision on $\beta\left(\Phi_{1}\right)$: (B. Ford's talk) $\sin 2 \beta_{W A}=0.734 \pm 0.055$

What about $\alpha\left(\phi_{2}\right)$?
 (H. Sagawa's talk) from $\alpha_{\text {eff }}$ isospin triangle analysis

- The decays $\mathbf{B} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{0}, \pi^{0} \pi^{0}$ are related by isospin
- $\pi \pi$ states can have $\mathbf{I}=2$ or $\mathbf{I}=0$

4 gluonic penguins only contribute to $\mathrm{I}=0(\Delta \mathrm{I}=1 / 2)$
$\ddagger \pi^{+} \pi^{0}$ is a pure $I=2(\Delta I=3 / 2)$ so it has only tree amplitude

- triangle relations allow determination
$\left|\mathbf{A}^{+0}\right|=\left|\mathbf{A}^{-0}\right|$ of penguin-induced shift in α :

Both BR($\left.\mathbf{B}^{0}\right)$ and $\operatorname{BR}\left(\overline{\mathbf{B}}^{\boldsymbol{0}}\right)$ have to be measured in the $\pi \pi$ modes

And finally $\gamma\left(\phi_{3}\right)$

(A. Golutvin's talk)

- γ is the weak phase difference between
$\mathrm{b} \rightarrow \mathrm{u}$ tree and $\mathrm{b} \rightarrow \mathrm{s}$ penguin amplitudes
ψ comparable tree and penguin contributions facilitate sensitivity to γ
- Challenges:
\rightarrow Strong phases
ψ Electroweak penguins (EWP)
\rightarrow Rescattering
- All two-body modes are useful:
$-\mathbf{K} \pi, \mathbf{K}^{*} \pi, \mathbf{K} \rho:$ sensitivity to γ
$\rightarrow \pi \pi: \mathbf{A}\left(\pi^{+} \pi^{0}\right) \sim$ pure tree $\rightarrow \mathbf{A}_{\text {CP }} \sim 0$
\rightarrow cross-check for the EWP suppression
- KK: constraints on rescattering

Charmless two-body (or quasi two-body)

 decays: $K \pi\left(K \rho, K^{*} \pi, ..\right)$0 rare decays: $10^{-5}-10^{-6}$:
\Rightarrow tree: Cabibbo suppressed ($\propto\left|\mathbf{V}_{\mathrm{ub}}\right|^{2}$)
\pm penguin: new physics in the loops?

a $\mathrm{K} \pi$ modes: theoretically cleaner
$\Rightarrow \mathbf{K}^{+} \pi: \mathbf{P}_{\mathrm{c}}\left(\lambda^{2}\right)+\mathrm{T}_{\mathrm{CA}}\left(\lambda^{4}\right)$
$\Rightarrow \mathrm{K}^{0} \pi+: \mathrm{P}_{\mathrm{c}}\left(\lambda^{2}\right)$
$\Rightarrow \mathbf{K}^{+} \pi^{0}: \mathbf{P}_{\mathrm{c}}\left(\lambda^{2}\right)+\mathrm{T}_{\mathrm{CA}+\mathrm{cs}}\left(\lambda^{4}\right)$
$\Rightarrow \mathbf{K}^{0} \pi^{0}: \mathrm{P}_{\mathrm{c}}\left(\lambda^{2}\right)+\mathrm{T}_{\mathrm{cs}}\left(\lambda^{4}\right)$
penguin amplitude favoured by CKM factor

Charmless two-body (or quasi two-body) decays: $\pi \pi,(\pi \rho, .$.$) and KK$

- $\pi \pi$ modes: all contributions of the same λ^{3} order
$\Rightarrow \pi+\pi: \mathrm{T}_{\mathrm{CA}}\left(\lambda^{3}\right)+\mathbf{P}_{\mathrm{u}}\left(\lambda^{3}\right)+\ldots \mid \mathbf{P}_{\mathrm{c}}\left(\lambda^{3}\right)$ pure tree:
$\Rightarrow \pi^{+} \pi^{0}: \mathrm{T}_{\mathrm{CA}+\mathrm{Cs}}\left(\lambda^{3}\right)+\ldots \longrightarrow \mathbf{T}\left[\pi^{+} \pi-\right]+\mathbf{T}\left[\pi^{0} \pi^{0}\right]$
$\Rightarrow \pi^{0} \pi^{0}: \underline{\mathrm{T}_{\mathrm{cs}}\left(\lambda^{3}\right)+\mathbf{P}_{\mathrm{u}}\left(\lambda^{3}\right)+\ldots+\mathrm{P}_{\mathrm{c}}\left(\lambda^{3}\right)}$

- KK modes: similar to $\pi \pi$, but no tree contributions
$\Rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$: W-exchange $\left(\lambda^{3}\right)$
$\Rightarrow \mathbf{K}^{0} \mathbf{K}^{+}: \mathbf{P}_{\mathrm{u}}\left(\lambda^{3}\right)+$ annihilation $\left(\lambda^{3}\right)+\mathbf{P}_{\mathrm{c}}\left(\lambda^{3}\right)$
$\Rightarrow \mathbf{K}^{0} \overline{\mathbf{K}^{0}}$: pure penguin: $\mathbf{P}_{\mathrm{u}}\left(\lambda^{3}\right)+\mathrm{P}_{\mathrm{c}}\left(\lambda^{3}\right)$

Direct CP violation:

both charged and neutral Bs
tagging is not always necessary
ψ charged and self-tagging modes

interesting modes

for new physics search:
$\Rightarrow K^{0} \pi^{+}$: pure penguin
$\Rightarrow K^{0} \pi^{0}$: color suppressed tree

- ~ 0 asymmetry
expected in the SM
\Rightarrow higher efficiency
ν interference between (at least) two amplitudes leading to the same final state

$$
\begin{aligned}
& \left.\left.\boldsymbol{A}_{f}=a_{1} \exp \left[i \delta_{1}+\phi_{1}\right)\right]+a_{2} \exp \left[i \delta_{2}+\phi_{2}\right)\right] \\
& \bar{A}_{\bar{f}}=a_{1} \exp \left[i\left(\delta_{1}-\phi_{1}\right]\right]+a_{2} \exp \left[i\left(\delta_{2}-\phi_{2}\right]\right]
\end{aligned}
$$

$\delta_{\mathrm{i}}:$ strong phase CP-even
the measured asymmetry is:

CP-odd
ϕ_{i} : weak phase

$$
\left.\mathbf{A}_{\mathbf{C P}} \equiv \frac{\left|\overline{\boldsymbol{A}}_{\bar{f}}\right|^{2}-\left|\boldsymbol{A}_{f}\right|^{2}}{\left|\overline{\boldsymbol{A}}_{\bar{f}}\right|^{2}+\left|\boldsymbol{A}_{f}\right|^{2}} \sim \sum_{i, j} a_{i} a_{j} \sin \phi_{i}-\phi_{i} \sin \delta_{i}-\delta_{j}\right)
$$

Analysis overview:

- Features of the analyses:
\pm event selection: exclusive B reconstruction (m_{ES} and $\Delta \mathrm{E}$)
4 high background from continuum
\rightarrow continuum suppression based on topological information
\rightarrow cross-feed from other B decays for $\pi^{0}(\rho)$ modes
ψ crucial K / π separation: excellent particle identification needed
to distinguish among various final states
\rightarrow Cleo and Belle: cut on a likelihood (dE/dx + Cherenkov angle)
\rightarrow BaBar: include the Cherenkov angle measurement in the maximum likelihood (ML) fit
\pm finally to separate signal from light-quark background:
\rightarrow maximum likelihood fit (Cleo and BaBar)
$\rightarrow \Delta$ E fit (Belle)

Event selection:

- Kinematically select \mathbf{B} candidates with \mathbf{m}_{ES} and $\Delta \mathbf{E}$
$\mathrm{m}_{\mathrm{ES}}=\sqrt{(\sqrt{\mathbf{s}} / 2)^{2}-\mathbf{p}_{\mathrm{B}}^{* 2}}$
$\boldsymbol{\Delta} \mathbf{E}=\mathbf{E}_{\mathbf{B}}^{*}-\sqrt{\mathbf{s}} / \mathbf{2}$
$\psi \mathbf{m}_{\text {Es }}$: powerful variable to separate signal from light-quark continuum

$\psi \Delta E$: some separation power for final states with
different K / π composition

Continuum suppression (I):

a spherical B events vs jet-like continuum

* several techniques exploiting event topology or angular distribution
* selection cuts on:
\Rightarrow Fox-Wolfram moments
\Rightarrow sphericity, $\cos \theta_{\mathrm{s}}$
\Rightarrow B direction $\left(\cos \theta_{\mathrm{B}}\right)$

\rightarrow build Fisher discriminants:
- to be included in a likelihood variable to cut on (Belle)
- to be included in the
angle between the sphericity axis of the B and the sphericity axis of the rest of the event maximum likelihood fit (Cleo and BaBar)

Continuum suppression (II):

- Fisher discriminants:
\Rightarrow Cleo: 14 variables
$\rightarrow 9$ energy cones, $\cos \theta_{\text {THR }}$,
4 momenta of the fastest \mathbf{e}, μ, K, p
${ }^{*}$ Fisher variable included in the ML fit
\Rightarrow BaBar: 2 variables
\& 2 Legendre Polinomials:

$$
\mathbf{P}^{0}\left(\mathbf{p}_{\mathrm{i}}^{*}\right) \text { and } \mathbf{P}^{2}\left(\mathbf{p}_{\mathrm{i}}^{*}, \cos \theta_{\mathrm{i}}^{*}\right)
$$

\Rightarrow Fisher variable included in the ML fit
\Rightarrow Belle: 6 variables

* Fox-Wolfram moment ratios
ψ adding $\cos \theta_{\mathrm{B}}$ to build a likelihood:
$*$ cut on the likelihood ratio $\mathrm{R}_{\mathrm{L}}=\mathrm{L}_{\mathrm{B}} /\left(\mathrm{L}_{\mathrm{B}}+\mathrm{L}_{\mathrm{qq}}\right)$

\Rightarrow BaBar:
* Cherenkov angle from the DIRC
$\Rightarrow \theta_{\mathrm{C}}$ included in the ML fit
\Rightarrow separation: 4σ @ $3 \mathrm{GeV} / \mathrm{c}$
\Rightarrow Belle:
* Cherenkov angle from the ACC $+\mathrm{dE} / \mathrm{dx}$ from the drift chamber
${ }^{*}$ cut on the likelihood ratio $L_{K} /\left(L_{\pi}+L_{K}\right)$

Branching Ratio (BR) results: $\mathbf{h}^{+} \mathbf{h}^{-}$with $\mathbf{h}=\pi, K$

BR results: $\mathbf{K} \pi$
mode

	Cleo	BaBar	Belle	WA
$B^{+} \rightarrow K^{0} \pi^{+}$	$18.8_{-3.3-1.8}^{+3.7+2.1}$	$20.0 \pm 1.6 \pm 1.0$	$22.0 \pm 1.9 \pm 1.1$	20.6 ± 1.4
$B^{+} \rightarrow K^{+} \pi^{0}$	$12.9_{-2.2-1.2}^{+2+1.2}$	$12.8_{-1.0}^{+1.2} \pm 1.0$	$12.8 \pm 1.4_{-1.0}^{+1.4}$	12.8 ± 1.1
$B^{0} \rightarrow K^{0} \pi^{0}$	$12.8_{-3.3-1.4}^{+4.0+1.7}$	$10.4 \pm 1.5 \pm 1.8$	$12.6 \pm 2.4 \pm 1.4$	11.5 ± 1.7

... and KK

mode	UL on BR (10	
	Cleo ${ }^{-6}$ @ 90Bar	Belle CL
$B^{+} \rightarrow K^{0} K^{+}$	$<3.3<2.2$	<3.4
$B^{0} \rightarrow K^{0} \bar{K}^{0}$	$<3.3<1.6$	<3.2

QCD factorization and present results:

BBNS [Nuclear Physics, B606, 245, 2001]

The other sides of the isospin triangles: BR results for $\pi^{ \pm} \pi^{0}$ and $\pi^{0} \pi^{0}$

mode	BR (10 ${ }^{-6}$) [UL @ 90\% CL]			
	Cleo	BaBar	Belle	WA
$B^{+} \rightarrow \pi^{+} \pi^{0}$	$4.6{ }_{-1.6-0.7}^{+1.8+0.6}$	$5.5{ }_{-0.9}^{+1.0} \pm 0.6$	$5.3 \pm 1.3 \pm 0.5$	5.3 ± 0.8
$B^{\mathbf{0}} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{\mathbf{0}}$	< 4.4	< 3.6	< 4.4	< 3.6

With an upper limit on the $\operatorname{BR}\left(\pi^{0} \pi^{0}\right)$:

- it is possible to get information on α
with only an upper limit on $\pi^{0} \pi^{0}$
- for example: Grossman-Quinn bound (assume only isospin)

$$
\cos 2\left(\alpha_{e f f}-\alpha\right)>1-2 \frac{B^{00}}{B^{+0}}
$$

$$
\left|\alpha_{\text {eff }}-\alpha\right|<51^{\circ} \mid @ 90 \% \text { CL from the best UL }
$$

trying the isospin triangle analysis for $\pi \pi$:
\rightarrow using the BaBar $\mathrm{C}_{\pi \pi}$ and $\mathrm{S}_{\pi \pi}$, WA BRs and $\operatorname{BR}\left(\pi^{0} \pi^{0}\right)=\mathbf{2 . 0} \cdot \mathbf{1 0}^{-6}{ }_{0.6}$ with $\left|\mathbf{A}^{00}\right|=\left|\mathbf{A}^{00}\right|$
ψ but scaling the errors to higher statistics: $\mathbf{5 0 0} \mathbf{~ f b}^{-1}$
hope: not to measure such a high $\operatorname{BR}\left(\pi^{0} \pi^{0}\right)$

$\mathbf{C P}$-violating asymmetries in $\mathbf{B} \rightarrow \rho^{+} \pi^{-}$

a in principle: direct measurement of α with the full three-body Dalitz plot analysis [A. Snyder, H. Quinn]
but: much more difficult than in the $\pi \pi$ case
\Rightarrow three-body topology with a neutral pion:
\Rightarrow huge combinatorics, lower efficiency
$\boldsymbol{*}$ high background from other B decays
a for the time being a quasi two-body analysis has been performed: \Rightarrow selection of the ρ-dominated

Dalitz plane region
\ddagger use of multivariate techniques
to suppress light quark bkg
\pm fit for $\rho^{+} \pi^{-}, \rho^{+} K^{-}$at the same time

Branching fraction results $\mathbf{B} \rightarrow \rho^{+} \pi^{-}$:

Trying the isospin triangle analysis for $\rho \pi$:

on $500 \mathrm{fb}^{-1}$ with the current WA BRs, C and S values and $\operatorname{BR}\left(\mathbf{B}^{0} \rightarrow \rho^{0} \pi^{0}\right)=0.9 \cdot \mathbf{1 0}^{-6}$
\rightarrow not much sensitivity to α

assume $\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \rho^{0} \pi^{0}\right)$ to be below experimental sensitivity:
ψ improved constraints,
$\rightarrow \mathbf{S U}(2)$ analysis gives meaningful constraints on α above $2 \mathbf{a b}^{-1}$

What's left? $K^{*} \pi$ and $\rho K . .$.

${ }^{-} K^{*} \pi$ and ρK :
4 same physics as $K \pi$
\Rightarrow sensitivity to γ ?

mode	BR $\left(10^{-6}\right)[$ UL @ 90\% CL]			
		Cleo	BaBar	Belle
$B^{0} \rightarrow \rho^{+} K^{-}$	$16_{-6}^{+8} \pm 3$	$7.3_{-1.2}^{+1.3 .} \pm 1.2$	$16 \pm 5_{-3}^{+2}$	
$B^{+} \rightarrow \rho^{0} K^{+}$	<17	-29	<12	
$B^{+} \rightarrow \rho^{+} K^{0}$	<48	-	-	
$B^{0} \rightarrow \rho^{0} K^{0}$	<39	-	<12	
$B^{0} \rightarrow K^{*+} \pi^{-}$	$\mathbf{1 6} 6_{-5}^{+6} \pm 2$	-	<30	
$B^{+} \rightarrow K^{* 0} \pi^{+}$	$7.6_{-3.5}^{+3.5} \pm 1.6$	$15.5 \pm 3.4 \pm 1.8$	$19.4_{-3.9}^{+4.2+2.1-6.8}$	
$B^{+} \rightarrow K^{*+} \pi^{0}$	<31	-	-	
$B^{0} \rightarrow K^{* 0} \pi^{0}$	<3.6	-	-	

Asymmetry measurements:

tagging needed for $\mathbf{K}^{0} \pi^{0}, \pi^{+} \pi^{-}$ $\pi^{+} \rho^{-}, \pi^{-} \rho^{+}$

These
measurements
are still
statistical
dominated

$$
\begin{aligned}
A^{+-} & =\frac{B R\left(\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}\right)-B R\left(B^{0} \rightarrow \rho^{-} \pi^{+}\right)}{B R\left(\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}\right)+B R\left(B^{0} \rightarrow \rho^{-} \pi^{+}\right)} \\
A^{-+} & =\frac{B R\left(\bar{B}^{0} \rightarrow \rho^{-} \pi^{+}\right)-B R\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)}{B R\left(\bar{B}^{0} \rightarrow \rho^{-} \pi^{+}\right)+B R\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right)}
\end{aligned}
$$

Summary and conclusions:

Charmless two-body PP decays: the picture is getting clearer \rightleftharpoons penguins don't seem to be negligible: $\mathrm{K} \pi$ vs $\pi \pi$
\rightarrow the inputs for the isospin triangle analysis (IA) are starting to be usable:
$\Rightarrow \pi^{+} \pi^{0}$ has been measured
still an upper limit on $\pi^{0} \pi^{0} \Rightarrow$ if high BR, IA not feasible?
\rightarrow too early for a significant constraint
© Charmless PV decays:
$\psi \rho^{+} \pi^{0}$ and $\rho^{0} \pi^{0}$ still missing for the IA
\rightarrow full Dalitz plot analysis on its way
$\#$ more missing pieces in the \mathbf{K}^{*} land
next years will be really interesting
$\#$ most measurements are statistically limited
\Rightarrow exciting times for angles and direct asymmetries

