Andrey Golutvin ITEP/Moscow

Reaching for γ (present and future)

Unitarity Triangles

There are a few methods of determining γ

CP violation in Decay

CP violation in Interference of Mixing & Decay

- $\boldsymbol{\cdot}$ Rates and asymmetries in K π Decays
- Amplitude triangles for B[±] →Dcp⁰K[±] (GLW method)
 - + extensions/modifications

- Time dependent asymmetries in Bd $\rightarrow \pi^+\pi^-$ and Bs $\rightarrow K^+K^-$ decays assuming U-spin symmetry
- Time dependent flavor tagged analysis of Bs→DsK⁻ decay

 $Bd \rightarrow D^*\pi^+$ decay

Data Samples (present and future)

Results presented today are based on 81.2 $fb^{-1}(BaBar)$ and 78 $fb^{-1}(BELLE)$ That corresponds to 88 and 85 mln BB pairs *(part of data sample)*

Statistics available today at B-factories \approx 300 mln BB pairs

In 2006 one expects \cong 1.2 bln BB pairs

In 2008 after 1 year of LHCb (and BTeV) operation ~ 10^{12} bb pairs

Super B_d-factory: 1.5 to 5 bln of "clean" BB events depending on achieved luminosity

γ from $B \rightarrow K\pi$ decays

Significant interference of tree and penguin amplitudes

$$A_{K\pi} \sim \lambda^2 e^{i\gamma} \Gamma + P$$

Expect potentially large CP asymmetries

Difficulties:

Theoretical

- EW penguins
- SU(3) breaking + (FSI) effects

Experimental

- small BF, qq background
- Particle ID is crucial

QCD penguins play the dominant role

Measurement of the ratios of BF and A_{CP}^{dir} may provide constraints on γ and strong phase δ

Summary of BFs [10⁻⁶]

Mode	BaBar	BELLE	CLEO	Avg.	$\delta \mathcal{B}/\mathcal{B}\left(\% ight)$
$K^+\pi^-$	$17.9 \pm 0.9 \pm 0.7$	$18.5 \pm 1.0 \pm 0.7$	$18.0^{+2.3+1.2}_{-2.1-0.9}$	18.1 ± 0.8	4
$K^0\pi^+$	$20.0 \pm 1.6 \pm 1.0$	$22.0 \pm 1.9 \pm 1.1$	$18.8^{+3.7+2.1}_{-3.3-1.8}$	20.6 ± 1.4	7
$K^+\pi^0$	$12.8^{+1.2}_{-1.1} \pm 1.0$	$12.8 \pm 1.4 {}^{+1.4}_{-1.0}$	$12.9^{+2.4+1.2}_{-2.2-1.1}$	12.8 ± 1.1	9
$K^0\pi^0$	$10.4 \pm 1.5 \pm 0.8$	$12.6 \pm 2.4 \pm 1.4$	$12.8^{+4.0+1.7}_{-3.3-1.4}$	11.2 ± 1.4	13
$\pi^+\pi^-$	$4.7 \pm 0.6 \pm 0.2$	$4.4 \pm 0.6 \pm 0.3$	$4.5_{-1.2-0.4}^{+1.4+0.5}$	4.6 ± 0.4	9
$\pi^+\pi^0$	$5.5^{+1.0}_{-0.9} \pm 0.6$	$5.3 \pm 1.3 \pm 0.5$	$4.6^{+1.8+0.6}_{-1.6-0.7}$	5.2 ± 0.8	15
$\pi^0\pi^0$	< 3.6	< 4.4	< 4.4	< 3.6	
K^+K^-	< 0.6	< 0.7	< 0.8	< 0.6	
$K^+\overline{K}{}^0$	< 2.2	< 3.4	< 3.3	< 2.2	
$K^0 \overline{K}{}^0$	< 1.6	< 3.2	< 3.3	< 1.6	

Comparison of BF

Present precision is dominated by statistical errors In a few years statistical and systematical errors should become comparable

A Specific Model: QCD Factorization

Beneke et. al., Nucl. Phys. B606, 245 (2001)

Data start to constrain models

CP asymmetries

(allows one to eliminate dependence on the strong phase δ)

Largest deviations: 2σ each in K⁺ π^- (BaBar), $\rho^+\pi^-$ (BaBar), and K⁺ π^0 (Belle)

•In a few years statistical precision in the measurements of Branching Fractions ($B \rightarrow K\pi/\pi\pi$) should reach the level of systematic error, 2-4% depending on decay mode

 \bullet Extraction of γ will be dominated by theoretical uncertainties

In 1 year BTeV expects:

4600 K⁰ π^+ events (with S/B = 1) 62100 K⁻ π^+ events (with S/B=20)

CP-even states: K+K-, π + π -CP-odd states: K_S π ⁰, K_S ϕ , K_S ω , K_S η , K_S η ' γ can be extracted from the reconstruction of two triangles

Experimental observables:

$$R_{1,2} = \frac{BF(B^{-} \rightarrow D_{1,2}K^{-}) / BF(B^{-} \rightarrow D_{1,2}\pi^{-})}{BF(B^{-} \rightarrow D^{0}K^{-}) / BF(B^{-} \rightarrow D^{0}\pi^{-})} , A_{1} \text{ and } A_{2}$$

allow, in principle, to extract $\,{\rm R}_{\rm DK^{-}}\,,\,\delta$ and γ

Hope to see soon $B^0 \rightarrow D^0 K^{*0}$ decay

Present Upper Limit is

 $BF(B^0 \rightarrow D^0 K^{*0}) < 1.8 \times 10^{-5}$

ADS variant of the amplitude triangle approach:

 $B^- \rightarrow \overline{D}^0[\rightarrow f_i] K^-$ and $B^- \rightarrow D^0[\rightarrow f_i] K^-$, $f_i = K^- \pi^+$ or $K^- \pi^+ \pi^0$

Use large interference effects Experimentally challenging since BF of $O(10^{-7})$ are involved

- Dalitz plot analysis of $D \rightarrow K_S \pi^+ \pi^-$ for $B^- \rightarrow DK^-$ and $B^+ \rightarrow DK^+$ decays
 - $\begin{array}{lll} \mathsf{K}_{\mathsf{S}}\pi^{\mathsf{+}}\pi^{\mathsf{-}} & \text{receives contributions from:} \\ & \mathsf{B}^{\mathsf{-}} \rightarrow \mathsf{D}^{\mathsf{0}}\mathsf{K}^{\mathsf{-}} & \mathsf{D}^{\mathsf{0}} \rightarrow \mathsf{K}^{\mathsf{+}}\pi^{\mathsf{+}} & \mathsf{K}^{\mathsf{+}} \rightarrow \mathsf{K}_{\mathsf{S}}\pi^{\mathsf{-}} \\ & \mathsf{B}^{\mathsf{-}} \rightarrow \mathsf{D}^{\mathsf{0}}\mathsf{K}^{\mathsf{-}} & \mathsf{D}^{\mathsf{0}} \rightarrow \mathsf{K}^{\mathsf{+}}\pi^{\mathsf{-}} & \mathsf{K}^{\mathsf{+}} \rightarrow \mathsf{K}_{\mathsf{S}}\pi^{\mathsf{+}} \\ & \mathsf{B}^{\mathsf{-}} \rightarrow \mathsf{D}^{\mathsf{0}}\mathsf{K}^{\mathsf{-}} & \mathsf{D}^{\mathsf{0}} \rightarrow \mathsf{K}_{\mathsf{S}}\rho^{\mathsf{0}} & \rho^{\mathsf{0}} \rightarrow \pi^{\mathsf{+}}\pi^{\mathsf{-}} \\ & \mathsf{B}^{\mathsf{-}} \rightarrow \mathsf{D}^{\mathsf{0}}\mathsf{K}^{\mathsf{-}} & \mathsf{D}^{\mathsf{0}} \rightarrow \mathsf{K}_{\mathsf{S}}\rho^{\mathsf{0}} & \rho^{\mathsf{0}} \rightarrow \pi^{\mathsf{+}}\pi^{\mathsf{-}} \end{array}$

Enough information to extract γ for any magnitude of δ

$B^0 \rightarrow D^* \pi^-$ Mode

 $(2\beta + \gamma)$ is extracted from the measurement of 4 time-dependent asymmetries

$$\begin{array}{l} \mathsf{R}_{\mathsf{D}^{\star}\pi} \text{ can be estimated using } \mathsf{BF}(\mathsf{B}^{\mathsf{O}} \rightarrow \mathsf{D}_{\mathsf{s}}^{+}\pi^{-}):\\ \mathsf{BF}(\mathsf{B}^{\mathsf{O}} \rightarrow \mathsf{D}_{\mathsf{s}}^{+}\pi^{-}) \approx \frac{\mathsf{BF}(\mathsf{B}^{\mathsf{O}} \rightarrow \mathsf{D}^{\star^{-}}\pi^{+})}{\mathsf{tan}^{2}\Theta_{\mathsf{c}}} \times \frac{\mathsf{f}_{\mathsf{D}\mathsf{s}}^{2}}{\mathsf{f}_{\mathsf{D}}^{\star^{2}}} \times \mathsf{R}_{\mathsf{D}^{\star}\pi^{2}}^{2} \end{array}$$

 $D^{*+}\pi^{-}$ Data Samples (partial reconstruction)

 τ_{B^0} = 1.510 ± 0.040 ± 0.041 ps

~30 fb⁻¹ , 3430 ± 80 events $\Delta m = 0.509 \pm 0.017 \pm 0.020 \text{ ps}^{-1}$

$$\begin{split} \delta(\sin(2\beta+\gamma)) &\propto \propto 0.15 \text{ for } 1000 \text{ fb}^{-1} \quad \text{T. Gershon} \ (\text{CKM workshop}, 2003) \\ \text{ or } \delta(2\beta+\gamma) &\propto 10^{\circ} \end{split}$$

from $B_s \rightarrow D^-_s K^+$, $D^+_s K^-$

Same principle as for $B^0 \rightarrow D^*\pi^-$ Since $\delta\gamma$ is small \rightarrow sensitivity should not depend on the value of γ

Two decay modes with comparable amplitudes, $B \sim 10^{-4}$ each

 γ can be determined from the measurement of 4 time-dependent asymmetries (assuming that $\delta\gamma$ is fixed from Bs mixing)

Contribution from NP is unlikely!

Looks as most clean method to measure γ

Importance of Particle ID

Needed:

- ✓ Hadronic trigger
- ✓ K/ π separation
- ✓ Good proper time resolution

In one year of LHCb running:

8k $B_s \rightarrow D_s^{\pm} K^{\pm}$ reconstructed events

 γ from $B_{(s)} \rightarrow \pi \pi$, K K

proposed by R. Fleischer

Measure time-dependent asymmetries in ${\rm B}^0 \to \pi^+\pi^-$ and ${\rm Bs} \to {\rm K}^+~{\rm K}^-$ decays to extract γ

$$\begin{aligned} A_{CP}^{dir}(B^{0} \to \pi^{+}\pi^{-}) &= function(d, \vartheta, \gamma) \\ A_{CP}^{mix}(B^{0} \to \pi^{+}\pi^{-}) &= function(d, \vartheta, \gamma, \phi_{d}) \\ A_{CP}^{dir}(B_{s} \to K^{+}K^{-}) &= function(d', \vartheta', \gamma) \\ A_{CP}^{mix}(B_{s} \to K^{+}K^{-}) &= function(d', \vartheta', \gamma, \phi_{s}) \end{aligned}$$

where d×exp(iϑ) is a function of T and P amplitudes

Assuming U-spin flavor symmetry: d=d' and $\vartheta = \vartheta'$ γ can be extracted

Y from $B_{(s)} \rightarrow \pi \pi$, K K

 \Box Evaluation of A_{CP}^{dir} and A_{CP}^{mix} sensitivity

from time-dependent measured asymmetry

$$A_{CP}^{th}(\tau) = \frac{A_{CP}^{dir} \cdot \cos(x \cdot \tau) + A_{CP}^{mix} \cdot \sin(x \cdot \tau)}{\cosh\left(\frac{\Delta\Gamma}{2} \cdot \tau\right) - A_{\Delta\Gamma} \cdot \sinh\left(\frac{\Delta\Gamma}{2} \cdot \tau\right)}$$

input values	$B^0 \rightarrow \pi^+ \pi$ -	$B_s \rightarrow K^+ K^-$	
yield	27k	35k	
B/S	0.8	0.55	
X _q	0.755	20	
εD ²	0.064	0.064	
A_{CP}^{dir}	-0.30	0.16	
A_{CP}^{mix}	0.58	-0.17	
ΔΓ	0.0	0.0	

In one year of LHCb operation :

B⁰ → π⁺ π⁻

$$\sigma(A \text{ dir }) \cong \sigma(A \text{ mix }) \cong 0.054$$

B_S → K⁺ K⁻
 $\sigma(A \text{ dir }) \cong \sigma(A \text{ mix }) \cong 0.043$

Sensitivity to γ :

assuming 4 years of data taking

(4x27k Bd $\rightarrow \pi\pi$ and 4x35k Bs \rightarrow KK)

B/S = 0.8 and 0.55 correspondingly

tagging: $\varepsilon D^2 = 6.4\%$

Conclusions

 γ can be measured both using CPV in decay (time-integrated) and in the interference of mixing and decay (time-dependent)

(1) Theoretically clean: b→ c X
 Amplitude triangles
 Bs→DsK

(2) Experimentally easier $b \rightarrow hh$ (h = non-c) Experimental precision on BF already below 10% level Clear theoretical strategy how to extract γ is still missing Measurement of rare decays with BF ~ 10⁻⁷could help

Expectations from CDF Run IIa

 $A_{CP} = A_{CP}(dir) cos(\Delta m \times t) + A_{CP}(mix) sin(\Delta m \times t)$

