New Narrow cs̄ States from CLEO:

Observation of the $\mathrm{D}_{\mathrm{sJ}}(2463) \rightarrow \mathrm{D}_{\mathrm{s}}^{*} \pi^{0}$ \& Confirmation of the $\mathrm{D}_{\mathrm{sJ}}^{*}(2317) \rightarrow \mathrm{D}_{\mathrm{s}} \pi^{0}$

The $\mathrm{D}_{\mathrm{s}}{ }^{* *}$ States

- Formed of cs̄ quarks, just like atom consider quark spin and angular momentum
- Ground state $\mathrm{J}^{\mathrm{p}}=0^{-}$, called $\mathrm{D}_{\mathrm{s}}{ }^{+}$
- 1^{-}state, $\mathrm{D}_{\mathrm{s}}{ }^{*} \rightarrow \gamma \mathrm{D}_{\mathrm{s}}(94 \%) \mathrm{M} 1, \rightarrow \pi^{0} \mathrm{D}_{\mathrm{s}}(6 \%)$, isospin violating strong decay
- Also seen relatively narrow 1^{+}and 2^{+}decays into $\mathrm{D}^{(*)} \mathrm{K}$
- Expectation was remaining $0^{+} \& 1^{+}$states would also decay into $\mathrm{D}^{(*)} \mathrm{K}$

The $\mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{0}$ state

- New state, mass $2316.8 \pm 0.4 \pm 3.0$ MeV , width consistent with mass resolution $\sim 9 \mathrm{MeV}$ found by BaBar - Lighter than most potential models What can this be?

- Four quark states: "Baryonia" or DK molecule Barnes, Close \& Lipkin hep-ph/0305025
- Van Beveren \& Rupp: Quasi bound state scalar due to coupling to DK threshold using unitarized meson model hep-ph/0305035
- Cahn \& Jackson: Poor explanation using non-relatavistic vector \& scalar exchange forces hep-ph/0305012
- Etc.....

HQET + Chiral Symmetry

" "Ordinary" excited c̄̄ state: $\mathrm{D}_{\mathrm{s}}^{* *}$, narrow because it is below DK threshold, in $\mathrm{D}_{\mathrm{s}} \pi$ decay isospin is violated.

- Use HQET + chiral symmetry to explain, Bardeen, Eichten \& Hill hep-ph/0305049
- Parity Doubling: Two orthogonal linear combinations of meson fields $\mathrm{D}\left(0^{-}, 1^{-}\right)+\mathrm{D}\left(0^{+}, 1^{+}\right) \& \mathrm{D}\left(0^{-}, 1^{-}\right)$$\mathrm{D}\left(0^{+}, 1^{+}\right)$transform as $\mathrm{SU}(3)_{\mathrm{L}} \mathrm{xSU}(3)_{\mathrm{R}}$ and split into $\left(0^{-}, 1^{-}\right) \&\left(0^{+}, 1^{+}\right)$doublets
- Must decay as $\left(0^{+}, 1^{+}\right) \rightarrow\left(0^{-}, 1^{-}\right)+$pseudoscalar; for ex: $D_{s}^{* *} \rightarrow D_{s} \eta$, which becomes $D_{s} \pi$ via $\eta-\pi$ mixing

CLEO Sees Two States

- Confirms the BaBar observation of $\mathrm{D}_{\mathrm{s}}(2317)$
- $\sigma=8.0_{-1.2}^{+1.3} \mathrm{MeV}$
- Detector res: $6.0 \pm 0.3 \mathrm{MeV}$
- 165 ± 20 events in peak
- See $2^{\text {nd }}$ state decaying into $\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{\mathrm{o}}$, at 2463 MeV
- $\sigma=6.1 \pm 1.0 \mathrm{MeV}$
- Detector res: $6.6 \pm 0.5 \mathrm{MeV}$
- 55 ± 10 events in peak

Can these states be reflections

 of other states? each other?- No known source has been thought of to create these peaks
- However, since the mass differences are both $\sim 350 \mathrm{MeV}$, they can reflect into each other!
- Which is feeding which and how much?

Feed Down: Ds 2460) Signal, Reconstructed as $\mathrm{D}_{\mathrm{s}}(2317)$

Feed up: $\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$ Monte Carlo Simulations

Thus $\mathrm{D}_{\mathrm{s}}(2317)$ does "feed up" to the $\mathrm{D}_{\mathrm{s}}(2463)$ by attaching to a random γ. However, the probability is low, only 9%, and the width is 14.9 MeV rather than 6.6 MeV

Basic Idea

- We are dealing with two narrow resonances which can reflect (or feed) into one another
- From the data and the MC we can calculate the amount of cross feed and thus extract the "true" signals in the data.

Calculation of Rates

$\mathrm{R} 0 \equiv$ reconstructed $\mathrm{D}_{\mathrm{sJ}} *(2317) \rightarrow \mathrm{D}_{\mathrm{s}} \pi^{0}$ excluding feed-down.
$\mathrm{R} 1 \equiv$ reconstructed $\mathrm{D}_{\mathrm{sJ}}(2463) \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$ excluding feed-up.
$\mathrm{N} 0 \equiv$ number of events extracted from fit to $\mathrm{D}_{\mathrm{s}} \pi^{0}$ mass spectrum. (190 ± 19)
$\mathrm{N} 1 \equiv$ number of events extracted from fit to $\mathrm{D}_{\mathrm{s}} * \pi^{0}$ mass spectrum (55 $\left.\pm 10\right)$

$$
\begin{aligned}
& \mathrm{N} 0=\mathrm{R} 0+\text { feed-down }=\mathrm{R} 0+\mathrm{R} 1 \times \mathrm{f}_{1} \\
& \mathrm{~N} 1=\mathrm{R} 1+\text { feed-up }=\mathrm{R} 1+\mathrm{R} 0 \times \mathrm{f}_{\mathrm{o}}
\end{aligned}
$$

$\mathrm{f}_{\mathrm{o}} \equiv$ the probability that the photon from a $\mathrm{D}_{\mathrm{s}}{ }^{*}$ is reconstructed \& reflects on $\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$ peak
$(9.1 \pm 0.7 \pm 1.5) \%$
$\mathrm{f}_{1} \equiv$ the probability that a D_{s} pickup a random γ to form $\mathrm{D}_{\mathrm{s}}{ }^{*} . \quad(84 \pm 4 \pm 10) \%$

$$
\begin{aligned}
& \mathrm{R} 0=155 \pm 23 \\
& \mathrm{R} 1=41 \pm 12
\end{aligned}
$$

Alternative Way to Estimate $\mathrm{D}_{\mathrm{s}} * \pi^{0}$ Signal - idea

- The $\mathrm{D}_{\mathrm{s}}{ }^{*}$ side band spectrum should contain as much feedup as in D_{s} * "signal". We can do a sideband subtraction and fit the spectrum.

Alternative Way to Estimate $\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$ Signal: Sideband subtraction

	Sideband subtraction	Conventional method
\# of events	45.7 ± 11.6	41 ± 12
$\mathrm{M}\left(\mathrm{D}_{\mathrm{s}}^{*} \pi^{0}\right)-\mathrm{M}\left(\mathrm{D}_{\mathrm{s}} *\right)$ MeV	351.2 ± 1.7	350.6 ± 1.2
Signal width (σ) MeV	5.5 ± 1.1	6.6 ± 0.5 Monte Carlo

This sideband subtracted signal is significant at the 5.7σ level

Alternative Way to Estimate $\mathrm{D}_{\mathrm{s}} \pi^{0}$ Signal: fit to two Gaussians

We can fit the spectrum using two Gaussian functions whose means and widths are allowed to float.

- The fit is consistent with the existence of a narrow signal and a broader feed-down contribution.

	Narrow Width	Broad width	Single Gaussian
Data	5.9 ± 1.2	16.5 ± 6.3	8.3 ± 1.2
MC	6.4 ± 0.4	14.9 ± 0.6	

- The amount of feed-down is consistent within error with the previous calculation.

The feed-down not only broadens the peak, but also shifts the center position. Using this fit we extract a more precise mass difference.

Search for other decay modes of $\mathrm{D}_{\mathrm{s}}(2317)$

$\mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$

These distributions were fit to Gaussians at the expected masses using MC widths to get upper limits

Electromagnetic Decay

Upper Limits on other

 $\mathrm{D}_{\mathrm{s}}(2317)$ modesMode Yield Efficiency(\%) $90 \% \mathrm{cl}$ Theory

$\mathrm{D}_{\mathrm{s}} \pi^{0}$	150 ± 49	13.1 ± 0.7	-	1
$\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$	-1.7 ± 3.9	3.6 ± 0.3	<0.11	0
$\mathrm{D}_{\mathrm{s}} \gamma$	-22 ± 13	18.4 ± 0.9	<0.052	0
$\mathrm{D}_{\mathrm{s}}{ }^{*} \gamma$	-2.0 ± 4.1	5.3 ± 0.4	<0.059	0.08
$\mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$	1.6 ± 2.6	19.6 ± 0.7	<0.019	0

- Corrected for feed across
- Theory: Bardeen, Eichten and Hill

Upper Limits on other D. (2463) modes

Mode Yield Efficiency(\%) 90% cl Theory

$\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$	41 ± 11	6.0 ± 0.2	-	1
$\mathrm{D}_{\mathrm{s}} \gamma$	40 ± 17	19.8 ± 0.4	<0.49	0.24
$\mathrm{D}_{\mathrm{s}}{ }^{*} \gamma$	-5.1 ± 7.7	9.1 ± 0.3	<0.16	0.22
$\mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$	2.5 ± 5.4	19.5 ± 1.5	<0.08	0.20
$\mathrm{D}_{\mathrm{s}}(2317) \gamma$	3.6 ± 3.0	2.0 ± 0.1	<0.58	0.13

- Corrected for feed across
- Theory: Bardeen, Eichten and Hill

$\mathrm{D}_{\mathrm{s}}(2463) \rightarrow \mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$?

- Above threshold for $\mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$, If this rate is large, this particle would be wide. Not isospin but OZI violating
- However no observed signal, B relative to $\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$ is <8\% @ 90\% c.l.
- BEH prediction is 19%, thus decay rate is not large but u.l is lower than prediction. Does this kill the model?
- Must calculate relative decay rates for $\mathrm{D}_{\mathrm{s}}(2463) \rightarrow \eta+\mathrm{D}_{\mathrm{s}}^{*} \rightarrow \pi^{0}+\mathrm{D}_{\mathrm{s}}{ }^{*}$ versus
$\mathrm{D}_{\mathrm{s}}(2463) \rightarrow \sigma+\mathrm{D}_{\mathrm{s}}{ }^{*} \rightarrow \pi^{+} \pi^{-}+\mathrm{D}_{\mathrm{s}}{ }^{*}$
- This is a difficult calculation, but it would nice at some point to see this decay mode

Conclusions I

- CLEO confirms the BABAR discovered cs̄ state near $2317 \mathrm{MeV} . \mathrm{mD}_{\mathrm{s}}(2317)-\mathrm{mD}_{\mathrm{s}}=350.0 \pm 1.2 \pm 1.0 \mathrm{MeV}$
- Likely to be 0^{+}because of lack of decays into $\mathrm{D}_{\mathrm{s}} * \pi^{0}$
- We have observed a new state near 2463 MeV , $\mathrm{mD}_{\mathrm{s}}(2463)-\mathrm{mD}_{\mathrm{s}}{ }^{*}=351.2 \pm 1.7 \pm 1.0 \mathrm{MeV}$, likely to be $1+$ because of lack of decay into $\mathrm{D}_{\mathrm{s}} \pi^{0}$ and DK
- The mass splittings are consistent with being equal as predicted by BEH if these are the $0^{+} \& 1^{+}$states (difference is $1.2 \pm 2.1 \mathrm{MeV}$)
- The widths are narrow, consistent with our mass resolution (after deconvolution), both have $\Gamma<7 \mathrm{MeV}$

Conclusions II

- Theories of QCD and Lattice QCD are necessary to extract information on fundamental parameters in the quark sector.
- The BEH model couples HQET with Chiral Symmetry and makes predictions about masses, widths and decay modes. This theory has previously not been considered as favored
- These results provide powerful evidence for this model
- However, it would be nice to see other decays

