

S. Stone June 2003

New Narrow cs̄ States from CLEO: Observation of the $D_{sJ}(2463) \rightarrow D_s^* \pi^o \&$ Confirmation of the $D_{sJ}^*(2317) \rightarrow D_s \pi^o$

The D_s** States

- Formed of cs quarks, just like atom consider quark spin and angular momentum
 - Ground state J^p=0⁻, called D_s⁺
 - 1⁻ state, D_s*→γ D_s (94%) M1, →π^o D_s (6%), isospin violating strong decay
 - Also seen relatively narrow 1⁺ and 2⁺ decays into D^(*)K
 - Expectation was remaining 0⁺ & 1⁺ states would also decay into D ^(*)K

The $D_s^+\pi^o$ state

- New state, mass 2316.8±0.4±3.0
 MeV, width consistent with mass resolution ~9 MeV found by BaBar ^{sup}
- Lighter than most potential models
- What can this be?

- Four quark states: "Baryonia" or DK molecule Barnes, Close & Lipkin hep-ph/0305025
- Van Beveren & Rupp: Quasi bound state scalar due to coupling to DK threshold using unitarized meson model hep-ph/0305035
- Cahn & Jackson: Poor explanation using non-relatavistic vector & scalar exchange forces hep-ph/0305012

[•] Etc.....

HQET + Chiral Symmetry

- "Ordinary" excited $c\bar{s}$ state: D_s^{**} , narrow because it is below DK threshold, in $D_s\pi$ decay isospin is violated.
- Use HQET + chiral symmetry to explain, Bardeen, Eichten & Hill hep-ph/0305049
 - Parity Doubling: Two orthogonal linear combinations of meson fields D(0⁻,1⁻)+D(0⁺,1⁺) & D(0⁻,1⁻)-D(0⁺,1⁺) transform as SU(3)_LxSU(3)_R and split into (0⁻,1⁻) & (0⁺,1⁺) doublets
 - Must decay as $(0^+, 1^+) \rightarrow (0^-, 1^-)$ + pseudoscalar; for ex: $D_s^{**} \rightarrow D_s \eta$, which becomes $D_s \pi$ via $\eta - \pi$ mixing

CLEO Sees Two States

- Confirms the BaBar observation of D_s(2317)
 - $\sigma = 8.0^{+1.3}_{-1.2}$ MeV
 - Detector res: 6.0±0.3 MeV
 - 165±20 events in peak
- See 2nd state decaying into D_s*π^o, at 2463 MeV
 - $\sigma = 6.1 \pm 1.0 \text{ MeV}$
 - Detector res: 6.6±0.5 MeV
 - 55±10 events in peak

Can these states be reflections of other states? each other?

- No known source has been thought of to create these peaks
- However, since the mass differences are both ~350 MeV, they can reflect into each other!
- Which is feeding which and how much?

Feed Down: $D_s(2460)$ Signal, Reconstructed as $D_s(2317)$

Feed up: D_s*π⁰ Monte Carlo Simulations

Thus $D_s(2317)$ does "feed up" to the $D_s(2463)$ by attaching to a random γ . However, the probability is low, only 9%, and the width is 14.9 MeV rather than 6.6 MeV

- We are dealing with two narrow resonances which can reflect (or feed) into one another
- From the data and the MC we can calculate the amount of cross feed and thus extract the "true" signals in the data.

Calculation of Rates

R0 ≡ reconstructed $D_{sJ}^{*}(2317) \rightarrow D_{s}\pi^{0}$ excluding feed-down. R1 ≡ reconstructed $D_{sJ}(2463) \rightarrow D_{s}^{*}\pi^{0}$ excluding feed-up. N0 ≡ number of events extracted from fit to $D_{s}\pi^{0}$ mass spectrum. (190±19) N1 ≡ number of events extracted from fit to $D_{s}^{*}\pi^{0}$ mass spectrum (55±10)

 $N0 = R0 + feed-down = R0 + R1 \times f_1$

$$N1 = R1 + feed-up = R1 + R0 \times f_o$$

 $f_o \equiv$ the probability that the photon from a D_s^* is reconstructed & reflects on $D_s^*\pi^o$ peak (9.1±0.7±1.5)%

 $f_1 \equiv$ the probability that a D_s pickup a random γ to form D_s^* . (84±4±10)%

 $R0 = 155 \pm 23$

 $R1 = 41 \pm 12$

Probability that background + $D_s\pi^o$ feed-up explains signal is ruled out at >5 σ level

Alternative Way to Estimate $D_s * \pi^o$ Signal - idea

The D_s* side band spectrum should contain as much feedup as in D_s* "signal".
We can do a sideband subtraction and fit the spectrum.

Alternative Way to Estimate D_s*π^o Signal: Sideband subtraction

significant at the 5.7 σ level

Alternative Way to Estimate $D_s \pi^o$ Signal: fit to two Gaussians

We can fit the spectrum using twoGaussian functions whose means and widths are allowed to float.

• The fit is consistent with the existence of a narrow signal and a broader feed-down contribution.

	Narrow Width	Broad width	Single Gaussian
Data	5.9±1.2	16.5±6.3	8.3±1.2
MC	6.4±0.4	14.9±0.6	

- The amount of feed-down is consistent within error with the previous calculation.
 - The feed-down not only broadens the peak, but also shifts the center position. Using this fit we extract a more precise mass difference.

Search for other decay modes of $D_s(2317)$

 $D_s \pi^+ \pi^-$

These distributions were fit to Gaussians at the expected masses using MC widths to get upper limits

Upper Limits on other $D_s(2317)$ modes

Mode	Yield	Efficiency(%)	90% cl	Theory
$D_s \pi^o$	150±49	13.1±0.7	_	1
$D_s^*\pi^o$	-1.7±3.9	3.6±0.3	<0.11	0
D _s γ	-22±13	18.4±0.9	< 0.052	0
$D_s * \gamma$	-2.0±4.1	5.3±0.4	< 0.059	0.08
$D_s \pi^+ \pi^-$	1.6±2.6	19.6±0.7	< 0.019	0

- Corrected for feed across
- Theory: Bardeen, Eichten and Hill

Upper Limits on other D_s(2463) modes

Mode	Yield	Efficiency(%)	90% cl	Theory
$D_s^*\pi^o$	41±11	6.0±0.2	-	1
D _s γ	40±17	19.8±0.4	<0.49	0.24
D _s *γ	-5.1±7.7	9.1±0.3	<0.16	0.22
$D_s \pi^+ \pi^-$	2.5±5.4	19.5±1.5	< 0.08	0.20
$D_{s}^{(2317)}\gamma$	3.6±3.0	2.0±0.1	< 0.58	0.13

- Corrected for feed across
- Theory: Bardeen, Eichten and Hill

 $D_{s}(2463) \rightarrow D_{s}\pi^{+}\pi^{-}?$

- Above threshold for $D_s \pi^+ \pi^-$, If this rate is large, this particle would be wide. Not isospin but OZI violating
- However no observed signal, B relative to $D_s^*\pi^o$ is <8% @ 90% c.l.
- BEH prediction is 19%, thus decay rate is not large but u.1 is lower than prediction. Does this kill the model?
 - Must calculate relative decay rates for $D_s(2463) \rightarrow \eta + D_s^* \rightarrow \pi^o + D_s^*$ versus $D_s(2463) \rightarrow \sigma + D_s^* \rightarrow \pi^+ \pi^- + D_s^*$
 - This is a difficult calculation, but it would nice at some point to see this decay mode

Conclusions I

- CLEO confirms the BABAR discovered $c\bar{s}$ state near 2317 MeV. $mD_s(2317)-mD_s = 350.0\pm 1.2\pm 1.0$ MeV
- Likely to be 0^+ because of lack of decays into $D_s^*\pi^o$
- We have observed a new state near 2463 MeV, mD_s(2463)-mD_s*=351.2±1.7±1.0 MeV, likely to be 1+ because of lack of decay into D_sπ^o and DK
- The mass splittings are consistent with being equal as predicted by BEH if these are the 0⁺ & 1⁺ states (difference is 1.2 ±2.1 MeV)
- The widths are narrow, consistent with our mass resolution (after deconvolution), both have $\Gamma < 7$ MeV

Conclusions II

- Theories of QCD and Lattice QCD are necessary to extract information on fundamental parameters in the quark sector.
- The BEH model couples HQET with Chiral Symmetry and makes predictions about masses, widths and decay modes. This theory has previously not been considered as favored
- These results provide powerful evidence for this model
- However, it would be nice to see other decays