

The next 25 minutes contain:

Introductory remarks

Unitarity violation in the first family

The Standard CKM fit: inputs and results
Some interesting topics beyond that

Concluding remarks

Constraining the CKM matrix

1. Consistency between data \& SM

UT: Not the whole story!
2. Constirain the four independent real parameters of the CKM matix $\Rightarrow C P$ violation in the SMJ (J)
3. Probing for New Physics

We follow here the Rfit approach:
Theoretical uncertainties: constant likelihood Addition of theoretical errors: "linear" In this way, CL's can be obtained (dependent on the theoretical error range chosen)!
A. Höcker, H. L., S. Laplace, F. Le Diberder EPJ C21 (2001) 225, [hep-ph/0104062]
Further reference: http://ckmfitter.in2p3.fr

Other approaches (not considered in this talk):
Bayesian approach (e.g. M. Ciuchini et al., JHEP 0107:013,2001)
Scan Method (BABAR Physics Book)
Likelihood fit (Schubert, Nogowski, CKM WS 2003)
See also: The CKM matrix and the unitarity triangle hep-ph/0304132

The Unitarity Problem in the first family: |Vud|

1. Superallowed nuclear β-decays

$$
f t\left(1-\delta_{c}\right)\left(1-\delta_{R}\right)=\frac{k}{2 G_{F}{ }^{2} \mid V_{u d}{ }^{2}\left(1+\Delta_{R}\right)}
$$

$\left|V_{u d}\right|=0.9740 \pm 0.0001 \pm 0.0008(5)(10) ?$
(Towner and Hardy, 2003)

Nuclear β-decay:
(12-A

$4-$

Contribution to V_{ud} uncertainty

3. Pion β-decay

$$
\left|V_{u d}\right|^{2}=\frac{(K / \ln 2) B R\left(\pi \rightarrow \pi^{0} e v_{e}\right)}{2 G_{F}^{2}\left(1+\Delta_{R}\right) f_{1} f_{2} f\left(1+\delta_{R}\right) \tau_{\pi}}
$$

$B R\left(\pi^{+} \rightarrow \pi^{0} e^{+} \nu\right)=(1.026 \pm 0.039) \times 10^{-8}$ (Macfarlane et al. 85) $B R\left(\pi^{+} \rightarrow \pi^{0} e^{+} v\right)=\left(1.044 \pm 0.007_{\text {sta }} \pm 0.009_{\text {sss }}\right) \times 10^{-8}$ (PIBETA 2003 Preliminary)

$$
\left|V_{u d}\right|=0.9765 \pm 0.0055 \pm 0.0005
$$

How to quantify the deviation from the unitarity condition?

$\left\|V_{\text {us }}\right\| V_{\text {ud }} \mid$	0.9717 ± 0.0013	0.9717 ± 0.00126 ± 0.0004	0.9740 ± 0.0005	0.9740 ± 0.0001 ± 0.0008
0.2201	0.72	0.71	4.40	10.26
± 0.0024	$\pm 0.08 \%$	$\pm 0.08 \%$	$\pm 0.21 \%$	$\pm 0.30 \%$
0.2201	0.60	1.07	4.31	23.37
± 0.0016	$\pm 0.08 \%$	$\pm 0.10 \%$	$\pm 0.20 \%$	$\pm 0.42 \%$
± 0.0018				

The Unitarity Problem solved: $\left|\mathrm{V}_{\mathrm{us}}\right|$?

The Standard CKM fit: Inputs

Metrology: the Unitarity Triangle (w/o $\left.\left|\mathrm{V}_{\mathrm{ub}}\right|!!!\right)$

Sin2 β : most precise and robust constraint

Does sin2 β measured
in different quark
processes give the same result?

Additional constraints and constraints on α and γ ?

Constraints in global fit:

$\sin 2 \beta, \Delta m_{d} \& \Delta m_{s^{\prime}}, \varepsilon_{\kappa}$ $\left|V_{\text {ub }}\right|$ overlaid

Which constraints can be improved? Good prospects: $\left|\mathrm{V}_{\mathrm{ub}}\right| \&\left|\mathrm{~V}_{\mathrm{cb}}\right|$

How to combine the different results for $\left|\mathrm{V}_{\mathrm{ub}}\right|$ (Excl.)?
Comparing Apples with Pies!

Selected Numerical Results ($\left|V_{u b}\right|$ not in the fit!)

CKM and UT Parameters	
Parameter	95% CL region
λ	0.2288 ± 0.0058
A	$0.73-0.84$
ρ	$0.04-0.42$
η	$0.24-0.46$
J	$(2.2-4.0) \times 10^{-5}$
$\sin (2 \alpha)$	$-0.95-0.54$
$\sin (2 \beta)$	$0.62-0.84$
α	$73^{\circ}-125^{\circ}$
β	$19.2^{\circ}-28.7^{\circ}$
γ	$32^{\circ}-83^{\circ}$

Rare Branching Fractions

Observable	95% CL region
$\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} v v\right)$	$(1.4-5.9) \times 10^{-11}$
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} v v\right)$	$(2.6-9.3) \times 10^{-11}$
$\operatorname{BR}\left(B^{+} \rightarrow \tau^{+} v\right)$	$(6.2-31.5) \times 10^{-5}$
$\operatorname{BR}\left(B^{+} \rightarrow \mu^{+} v\right)$	$(2.4-12.3) \times 10^{-7}$

Theory Parameters ${ }^{\left({ }^{(}\right)}$
Observable 95% CL region (limit)

m_{t}	$>95 \mathrm{GeV} / c^{2}$
$f_{B d} \sqrt{ } B_{d}$	$>180 \mathrm{MeV}$
B_{K}	$0.46-1.62$

Observable

$\left\|V_{\mathrm{ub}}\right\|$	$(3.2-4.9) \times 10^{-3}$
Δm_{s}	$(15-41) \mathrm{ps}^{-1}$

(*) Without using a priori information
p-value (SM): 11\%

Time dependent CP asymmetries in $\mathrm{b} \rightarrow$ sss

Exciting effect? CAVEAT!
Statistics can be mean!

Both decavs dominated by single weak phase

Penquin:
New Physia

Constraint from Rare Kaon Decays: $K^{+} \rightarrow \bar{\pi}^{+} v \overline{\mathrm{v}}$

Penguin:

Buchalla, Buras, Nucl.Phys. B548 (1999) 309

top contribution
charm contribution
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \vee \bar{v}\right) \propto \lambda^{8} A^{4} X^{2}\left(X_{t}\right) \frac{1}{\sigma}[\underbrace{(\sigma \bar{\eta})^{2}+\left(\rho_{0}-\bar{\rho}\right)^{2}}_{\text {ellipse }}]$
Main theoretical uncertainty:
Charm contribution (m_{c}, scale dependence)
Parametric uncertainties: $\left|\mathrm{V}_{\mathrm{cb}}\right|, \mathrm{m}_{\mathrm{t}}(=>$ Tevatron)

Experiment:

Two events observed at BNL (E787), yielding:

$$
B\left(K^{+} \rightarrow \pi{ }^{+} V \bar{V}\right)=\left(1.57_{-0.82}^{+1.75}\right) \times 10^{-10} \quad \text { E787(BNL-68713) } \quad \text { PRL 88:041803, } 2002
$$

Constraint from Rare Kaon Decays: $K^{+} \rightarrow \pi^{+} v \bar{v}$

CP Violation in $B^{0} \rightarrow \pi^{+} \pi^{-}$Decays

$$
{ }^{\lambda_{C P}}={ }_{n} f_{C P} \frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}
$$

$$
A_{t_{C P}}(t) \times S_{f_{C P}} \sin \left(\Delta m_{d} t\right)-C_{f_{C P}} \cos \left(\Delta m_{d} t\right)
$$

$$
\begin{aligned}
& C_{f_{C P}}=\frac{1-\left|\lambda_{f_{c p}}\right|^{2}}{1+\left|\lambda_{c c}\right|^{2}} \\
& S_{f_{C P}}=\frac{2 \mid m_{\lambda}}{1+\left|\lambda_{f c p}\right|^{2}}
\end{aligned}
$$

	BABAR	Belle
$S_{\pi \pi}$	$+0.02 \pm 0.34$	-1.23 ± 0.42
$C_{\pi \pi}$	-0.30 ± 0.25	-0.77 ± 0.28
ρ	-0.10	0.024

$$
\begin{array}{r}
A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=R_{u} e^{i \gamma} T_{\pi \pi}+R_{c} P_{\pi \pi} \\
\lambda_{\pi \pi}=e^{-2 i \beta} \frac{e^{-i \gamma}+\left(R_{c} / R_{u}\right)\left(P_{\pi \pi} / T_{\pi \pi}\right)}{e^{i \gamma}+\left(R_{c} / R_{u}\right)\left(P_{\pi \pi} / T_{\pi \pi}\right)}
\end{array}
$$

For a single weak phase (tree):

$$
\begin{aligned}
& \therefore= \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}={ }_{n}{ }_{f} e^{-2 i(\beta+\gamma)}={ }_{n}{ }_{f} e^{2 i \alpha} \\
& C_{\pi \pi}=0, S_{\pi \pi}=\sin \left(2_{\alpha}\right)
\end{aligned}
$$

For additional phases:

$$
\begin{aligned}
& |\lambda| \neq 1 \Rightarrow \text { must fit for direct CP } \\
& \operatorname{Im}(\lambda) \neq \sin \left(2_{\alpha}\right) \Rightarrow \text { need to know } \\
& \left|P_{\pi \pi} / T_{\pi \pi}\right|, \delta=\arg \left(P_{\pi \pi} / T_{\pi \pi}\right) \\
& C_{\pi \pi} \neq \mathbf{0}, \mathbf{S}_{\pi \pi} \sim \sin \left(\mathbf{2}_{\alpha \text { eff }}\right) \\
& \hline
\end{aligned}
$$

Numerical analysis within different theoretical frameworks (far from complete)

1. Isospin symmetry $\operatorname{SU}(2)(G L)$

$$
\frac{A^{+}}{\sqrt{2}}+A^{00}=A^{+0}
$$

EW-Penguins neglected
CP-averaged $\mathrm{BR}(\mathrm{B} \rightarrow \pi \pi$) only
$B \rightarrow \pi^{0} \pi^{0}$ not seen yet
=> Bounds (GQ, Ch, GLSS)
2. Flavor symmetry $\operatorname{SU}(3)$ (SW)
a) $\left|\mathbf{P}_{\text {ппт }}\right|=\left|\mathbf{P}_{\text {коко }}\right| \quad(B F, C h)$

EW-Penguins neglected
b) $\left|\mathbf{P}_{\pi \pi}\right|=\left|\mathbf{P}_{\mathrm{K} \pi}\right| \quad$ (Ch)

OZI-suppressed AnnihilationPenguins neglected
No correction for SU(3) breaking
3. $\left|P_{\text {nut }}\right|$ from $B \rightarrow K^{0} \pi$ (FM, Ch, GR)

SU(3) + no EW-Penguins => $\left|P_{K \circ \pi}\right|=\left|P_{K \pi}\right|$
No $\left|V_{u s} V_{\text {ub }}{ }^{*}\right|$ contribution $=>\left|P_{\text {Kот }}\right|=\left|A\left(B \rightarrow K^{0} \pi\right)\right|$
Here we use: $\left.\left|P_{\pi \pi}\right|=\sqrt{\frac{\tau_{0}}{\tau_{+}} \frac{f_{\pi}}{f_{K}}} \frac{1}{R_{t+1}}\right) P_{K^{0}{ }_{\pi}(\text { (HLPR })}$

[^0]
See also talk by
 Michael Gronau

$\sin \left(2 \alpha_{\text {eif }}\right) \& S U(2)$ symmetry

Using the BR's
$: \pi^{+} \pi^{-}, \pi^{ \pm} \pi^{0}, \pi^{0} \pi^{0}$ (limit)
and CP asymmetries
$: \boldsymbol{A}_{\mathrm{CP}}\left(\pi^{ \pm} \pi^{0}\right), \boldsymbol{S}_{\pi \pi}, \boldsymbol{C}_{\pi \pi}$

$$
\cos \left(2 \alpha-2 \alpha_{e f f}\right) \geq \frac{1-2 B^{00} / B^{+0}}{\sqrt{1-C_{\pi \pi}^{2}}}
$$

Grossman-Quinn 98; Charles 99; Gronau-London-Sinha-Sinha 01

How about More Statistics?

Isospin analysis for present central values, but $500 \mathrm{fb}^{-1}$

If central value of $\mathrm{BR}\left(\pi^{0} \pi^{0}\right)$ stays large, full isospin analysis is impossible for first generation B factories

We might be lucky: Compensation between $\mathrm{C}_{\pi \pi}$ and $1-2 \mathrm{~B}^{00} / \mathrm{B}^{+0}$?

$\sin \left(2 \alpha_{\text {eff }}\right) \& \operatorname{SU}(3):\left|P_{\pi+\pi}\right|=\left|P_{K+\pi \cdot}\right|$

Using in addition the BR: $\quad \mathrm{K}^{+} \pi^{-}$

$$
\cos \left(2 \alpha-2 \alpha_{e f f}\right) \geq \frac{1-2 \lambda^{2} B_{K \pi}^{+-} / B^{+-}}{\sqrt{1-C_{\pi \pi}^{2}}}
$$

No significant constraints. However:
$C_{\pi \pi} \approx 0.75$ => dramatic improvement

$\sin \left(2 \alpha_{\text {eff }}\right) \& S U(3):\left|P_{\pi+\pi}\right|$ from $B^{ \pm} \rightarrow K^{0} \pi^{ \pm}$

Using in addition the BR: $K^{0} \pi^{ \pm}$

$$
\left|P_{\pi \pi}\right|=\sqrt{\frac{\tau_{0}}{\tau_{+}}} \frac{f_{\pi}}{f_{K}} \frac{1}{R_{t h}}\left|P_{K^{0} \pi}\right|
$$

$\|$ Constraint significantly improved.
However, uncertainties still too large!

Experimental Observables \& Theoretical Unkowns

.Prediction of $S_{\pi \pi}$ and $C_{\pi \pi}$ within different frameworks if the CKM phase is constrained by the global CKM fit:
-What are the constraints on $|\mathrm{P} / \mathrm{T}|$ and δ
if the CKM phase is constrained by the global CKM fit:

α from $B^{0} \rightarrow \rho \pi:$ SU(3) constraints

J. Charles, LPT-Orsay99-31: SU(3) \& neglect OZI-suppressed annihilation penguins
A. Höcker, M.Laget, S. Laplace, J. von Wimmersperg-Toeller, LAL-03-17

$$
\begin{aligned}
& \cos \left(2 \alpha-2 \alpha_{e f f}^{+-}\right)=1-2 \lambda^{2} \frac{B R_{K^{\circ} \pi}^{+}}{B R_{\rho \pi}^{+-}} \\
& \rightarrow\left|\alpha-2 \alpha_{e f f}^{+-}\right|<18.8 \mathrm{deg} . \\
& \cos \left(2 \alpha-2 \alpha_{e f f}^{+}\right)=1-2 \lambda^{2} \frac{B R_{\rho K}^{+}}{B R_{\rho \pi}^{+}} \\
& \rightarrow\left|\alpha-2 \alpha_{e f f}^{+}\right|<13.9 \mathrm{deg} .
\end{aligned}
$$

$$
\delta=\arg \left(A^{+} A^{+-*}\right)
$$

If δ were measured in a Dalitz-analysis there would an interesting constraints on α even with the present statistics !!!

From the five CP-observables measured by BABAR one infers:

Some Concluding Remarks

1) Unitarity problem: "What actually is a theoretical error?"
$\left|\mathrm{V}_{\text {ud }}\right|$: Unitarity problem again on the table! (H. Abele, CKM WS 2003)
$\left|\mathrm{V}_{\mathrm{us}}\right|$: Does BNL-E865 solve the problem? (NA48, KLOE, \boldsymbol{t}-decays(Jamin))
2) We definitely do need (expert's) averages for $\left|\mathrm{V}_{\mathrm{ub}}\right|$! $\quad \Rightarrow \quad$ HFAG!
3) Moment measurements are of great importance !
$\left(\left|\mathrm{V}_{\mathrm{cb}}\right|,\left|\mathrm{V}_{\mathrm{ub}}\right|\right.$, OPE $)$
4) We are suffering from large theoretical errors !

Is there any hope to improve B_{k} ?
What about the chiral logs?
5) We are eagerly awaiting larger statistics for "sin2 β " $\left(\phi K_{\mathrm{s}}\right)$!
6) The quest for α has just started. The penguin is (by far) not tamed (yet) ! $\mathrm{BR}\left(\pi^{0} \pi^{0}\right) \approx \mathrm{O}\left(2^{\star} 10^{-6}\right)$? (\Rightarrow Isospin analysis?) $\mathrm{C}_{\pi \pi}$ small or large ? (\Rightarrow Factorisation, SU(2)\&SU(3) bounds)

$$
\mathrm{BR}\left(\mathrm{~B} \rightarrow \mathrm{~K}^{0} \mathrm{~K}^{0}\right)<1.6^{*} 10^{-6}(\text { M.Bona }) \Rightarrow\left|\alpha-\alpha_{\text {eff }}\right|<35^{\circ}(\text { SU(3), Buras \& Fleischer, Charles) }
$$

Interesting constraints on α in $B \rightarrow \rho \pi$ using SU(3) and neglecting OZI-suppressed annihilation penguins once δ has been measured in the Dalitz-analysis !

Many thanks to:
CKMffiter: J. Charles, A. Höcker, S. Laplace, F. Le Diberder, J. Ocariz, M. Pivk, L. Roos In addition: U. Langenegger, Z. Ligeti, K. Schubert, L. Wilden Last but not least: The contributors to the CKM workshops 2002/03 and the HFAG

[^0]: GL: Gronau, London, Phys.Rev.LettD65:3381,1990
 GQ: Grossman, Quinn, Phys.Rev.D58, (1998) 017504
 Ch: Charles, Phys.Rev.D59:054007,1999
 GLSS: Gronau, London, Sinha, Sinha, Phys.Lett.B514 (2001) 315
 SW: Silva, Wolfenstein, Phys.Rev.D49(1994) 1151
 BF: Buras,Fleischer, Phys.Lett.B360:138,1995
 FM: Fleischer, Mannel, Phys.Lett. B397(1997)269
 GR: Gronau, Rosner, Phys.Rev.D65:013004,2002+other papers
 BBNS: Beneke et al., Nucl.Phys.B606:245-321,2001
 HLPR: Höcker, Lacker, Pivk, Roos, LAL-02-103

