

The next 25 minutes contain:

Introductory remarks Unitarity violation in the first family The Standard CKM fit: inputs and results Some interesting topics beyond that Concluding remarks

Constraining the CKM matrix

1. Consistency between data & SM

UT: Not the whole story!

- 2. Constrain the four independent real parameters of the CKM matrix
 => CP violation in the SM (J)
- **3. Probing for New Physics**

We follow here the Rfit approach:

Theoretical uncertainties: constant likelihood

Addition of theoretical errors: "linear"

In this way, CL's can be obtained (dependent on the theoretical error range chosen)!

A. Höcker, H. L., S. Laplace, F. Le Diberder EPJ C21 (2001) 225, [hep-ph/0104062]

Further reference: http://ckmfitter.in2p3.fr

The Unitarity Problem in the first family: |Vud

The Unitarity Problem in the first family: |V_{ud}|

How to quantify the deviation from the unitarity condition?

	0.9717	0.9717 0.9740		0.9740
	±0.0013	±0.00126	±0.0005	±0.0001
		±0.0004		±0.0008
0.2201	0.72	0.71	4.40	10.26
±0.0024	±0.08 %	±0.08 %	±0.21 %	± 0.30%
0.2201	0.60	1.07	4.31	23.37
±0.0016	±0.08 %	±0.10 %	±0.20 %	± 0.42%
±0.0018				

The Standard CKM fit: Inputs

 $0.9721 \pm 0.0009 \pm 0.0004$ 0.9740 + 0.0001 + 0.0008 $0.2228 \pm 0.0039 \pm 0.0018$ (4.12 ± 0.13 ± 0.42) ×10⁻³ $(3.17\pm0.17\pm0.17\pm0.03^{+0.53})$ × 10⁻³ Exclusive (π + ρ), CLEO'03 (3.64 ± 0.22 ± 0.25^{+0.39} ,0.56) ×10^{−3} $(3.11 \pm 0.13 \pm 0.24 \pm 0.61) \times 10^{-3}$ $(42.6 \pm 1.1 \pm 2.1) \times 10^{-3}$ $(40.7 \pm 0.6 \pm 0.8) \times 10^{-3}$ (2.271 ± 0.017) ×10⁻³ $(0.502 \pm 0.006) \text{ ps}^{-1}$ **Amplitude Spectrum** 0.734 ± 0.055 (167 ± 5) GeV/c² 0.55 ± 0.01 $(223 \pm 33 \pm 12) \text{ MeV}$ $1.24 \pm 0.04 \pm 0.06$ $0.86 \pm 0.06 \pm 0.14$ 1.2 ± 0.2 1.46 ± 0.41 **0.47** ± **0.04** 0.5765 ± 0.0065

neutron β decay (my average) nuclear β decay (my proposal) $K \rightarrow \pi I \nu$, my proposal Inclusive, my average Exclusive (p), BABAR'02 Exclusive (π , UKQCD), Belle'03 Exclusive: PDG 2003 Inclusive: HFAG, Winter 2003 **PDG 2002**

HFAG, Winter 2003

CDF. D0. PDG 2002

ICHEP 2002, L. Lellouch

PDG 2002

CKM WS 2002, U. Nierste

Selected Numerical Results $(|V_{ub}| \text{ not in the fit!})$

CKM and UT Parameters			Rare Branching Fractions		
Parameter	95% CL region		Observable	95% CL region	
λ	0.2288 ± 0.0058		BR(<i>K</i>_L→π⁰∨∨)	(1.4 − 5.9) ×10 ^{−11}	
А	0.73 - 0.84		BR(<i>K</i>⁺→π⁺νν)	(2.6 − 9.3) ×10 ^{−11}	
ρ	0.04 - 0.42		BR(<i>B</i> ⁺→τ⁺ν)	(6.2 – 31.5) ×10⁻⁵	
η	0.24 - 0.46		BR(<i>B</i> ⁺→μ⁺ν)	(2.4 – 12.3) ×10⁻7	
J	(2.2 – 4.0) × 10 ^{–5}				
sin(2 α)	-0.95 - 0.54		Theory Parameters(*)		
sin(2 β)	0.62 - 0.84		Observable	95% CL region (limit)	
α	73º – 125º		m_t	> 95 GeV/c ²	
β	19.2º – 28.7º		$f_{Bd}^{} \sqrt{B_d^{}}$	> 180 MeV	
γ	32º - 83º		B _K	0.46 – 1.62	
Observabl	e 95% CL reg	gion		(*) Without using a priori information	
V _{ub}	$ V_{ub} $ (3.2 – 4.9) × 10 ⁻³		p-va	alue (SM): 11%	
Δm _s	(15 – 41) p	DS ⁻¹		■ V _{ud} & V _{ud}	

Time dependent CP asymmetries in b → ss5

Constraint from Rare Kaon Decays: $K^+ \rightarrow \overline{\pi}^+ \nu \overline{\nu}$

Constraint from Rare Kaon Decays: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

At present dominated by experimental uncertainties. Uncertainties on $|V_{cb}|^4 = \lambda^8 A^4$ are important for constraints in the ρ - η plane ! (For $K_{\perp} \rightarrow \pi^0 \sqrt{v}$ as well!) Improvement during the last year!

Guido Martinelli

Numerical analysis within different theoretical frameworks (far from complete)

1. Isospin symmetry SU(2) (GL)

 $\frac{A^{+-}}{\sqrt{2}} + A^{00} = A^{+0}$

EW-Penguins neglected

CP-averaged BR($B \rightarrow \pi\pi$) only B $\rightarrow \pi^0\pi^0$ not seen yet => Bounds (GQ, Ch, GLSS)

- 2. Flavor symmetry SU(3) (SW)
- a) |P_{ππ}| = |P_{κοκο}| (BF,Ch) EW-Penguins neglected
- b) $|P_{\pi\pi}| = |P_{\kappa\pi}|$ (Ch) OZI-suppressed Annihilation-Penguins neglected No correction for SU(3) breaking

3. $|P_{m}|$ from $B \rightarrow K^0 \pi$ (FM, Ch, GR)

SU(3) + no EW-Penguins => $|P_{K0\pi}| = |P_{K\pi}|$ No $|V_{us}V_{ub}^*|$ contribution => $|P_{K0\pi}| = |A(B \rightarrow K^0\pi)|$ Here we use: $|P_{\pi\pi}| = \sqrt{\frac{\tau_0}{\tau_+} \frac{f_{\pi}}{f_K} \frac{1}{R_{th}}} P_{K^0\pi}|$ (HLPR) taken from GR taken from BBNS GL: Gronau, London, Phys.Rev.LettD65:3381,1990 GQ: Grossman, Quinn, Phys.Rev.D58, (1998) 017504 Ch: Charles, Phys.Rev.D59:054007,1999 GLSS: Gronau, London, Sinha, Sinha, Phys.Lett.B514 (2001) 315

- SW: Silva, Wolfenstein, Phys.Rev.D49(1994) 1151
- BF: Buras, Fleischer, Phys. Lett. B360:138,1995
- FM: Fleischer, Mannel, Phys.Lett. B397(1997)269
- GR: Gronau, Rosner, Phys.Rev.D65:013004,2002+other papers
- BBNS: Beneke et al., Nucl.Phys.B606:245-321,2001
- HLPR: Höcker, Lacker, Pivk, Roos, LAL-02-103

See also talk by Michael Gronau

How about More Statistics?

Isospin analysis for present central values, but 500 fb⁻¹

is impossible for first generation B factories

We might be lucky: Compensation between C_{m} and $1-2B^{00}/B^{+0}$?

$sin(2\alpha_{eff}) \& SU(3): |P_{\pi+\pi}| = |P_{K+\pi}|$

Using in addition the BR: $K^+\pi^-$

 $\cos(2\alpha - 2\alpha_{eff}) \ge \frac{1 - 2\lambda^2 B_{K\pi}^{+-} / B^{+-}}{\sqrt{1 - C_{\pi\pi}^2}}$

 $C_{\rm m} \approx 0.75 => dramatic improvement$

sin(2 α_{eff}) & SU(3): $|P_{\pi+\pi-}|$ from $B^{\pm} \rightarrow K^{0}\pi^{\pm}$

Experimental Observables & Theoretical Unkowns

α from $B^0 \rightarrow \rho \pi$: SU(3) constraints

J. Charles, LPT-Orsay99-31: SU(3) & neglect OZI-suppressed annihilation penguins A. Höcker, M.Laget, S. Laplace, J. von Wimmersperg-Toeller, LAL-03-17

$$\cos (2\alpha - 2\alpha_{eff}^{+-}) = 1 - 2\lambda^{2} \frac{BR_{K^{*}\pi}^{+-}}{BR_{\rho\pi}^{+-}}$$
$$\rightarrow |\alpha - 2\alpha_{eff}^{++}| < 18.8 \ deg.$$
$$\cos (2\alpha - 2\alpha_{eff}^{++}) = 1 - 2\lambda^{2} \frac{BR_{\rho K}^{-+}}{BR_{\rho\pi}^{+-}}$$
$$\rightarrow |\alpha - 2\alpha_{eff}^{-+}| < 13.9 \ deg.$$

$$\delta = arg(A^{-+}A^{+-*})$$

If δ were measured in a Dalitz-analysis there would an interesting constraints on α even with the present statistics !!!

Some Concluding Remarks

- Unitarity problem: "What actually is a theoretical error?"
 |V_{ud}|: Unitarity problem again on the table! (H. Abele, CKM WS 2003)
 |V_{us}|: Does BNL-E865 solve the problem? (NA48, KLOE,τ-decays(Jamin))
- 2) We definitely do need (expert's) averages for $|V_{\mu}|! => HFAG!$

(|V₀|, |V₁|, OPE)

- 3) Moment measurements are of great importance !
- 4) We are suffering from large theoretical errors ! Is there any hope to improve B_κ? What about the chiral logs ?
- 5) We are eagerly awaiting larger statistics for "sin2 β "(ϕK_s)!
- 6) The quest for α has just started. The penguin is (by far) not tamed (yet) ! BR($\pi^0\pi^0$) $\approx O(2^*10^{-6})$? (=> Isospin analysis?) C_{$\pi\pi$} small or large ? (=> Factorisation, SU(2)&SU(3) bounds) BR(B $\rightarrow K^0K^0$) <1.6*10⁻⁶ (M.Bona) => $|\alpha - \alpha_{eff}|$ < 35° (SU(3), Buras & Fleischer, Charles) Interesting constraints on α in B $\rightarrow \rho\pi$ using SU(3) and neglecting OZI-suppressed annihilation penguins once δ has been measured in the Dalitz-analysis !

Many thanks to:

CKMfitter: J. Charles, A. Höcker, S. Laplace, F. Le Diberder, J. Ocariz, M. Pivk, L. Roos In addition: U. Langenegger, Z. Ligeti, K. Schubert, L. Wilden Last but not least: The contributors to the CKM workshops 2002/03 and the HFAG

Don't miss this opportunity!

Be a good Physicist!

Visit Foucault's pendulum in the Pantheon!