▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Prolific Pair Production in Laser Beams

John Kirk

Max-Planck-Institut für Kernphysik Heidelberg, Germany

Collaborators: Tony Bell (University of Oxford/CLF), Ioanna Arka (MPIK)

École Polytechnique, 22nd June 2009

Introduction	Method	Results	Summary/Outlook
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Method	Results	Summary/Outlook
Motivation			

Physicists are planning lasers powerful enough to rip apart the fabric of space and time (Nature, 446 (2007))

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Method	Results	Summary/Outlook

Motivation

Physicists are planning lasers powerful enough to rip apart the fabric of space and time (Nature, 446 (2007))

- Within \sim 1 year, pulses with 10²³-10²⁴ W cm⁻² available at $\lambda = 1 \ \mu m$
- Strength parameter

$$a = \frac{\text{Larmor frequency}}{\text{wave frequency}}$$
$$= eE\lambda/mc^{2}$$
$$= 855\sqrt{l_{24}\lambda_{\mu m}^{2}}$$

・ロット (雪) (日) (日) (日)

Introduction	Method	Results	Summary/Outlook

Motivation

Physicists are planning lasers powerful enough to rip apart the fabric of space and time (Nature, 446 (2007))

- Within \sim 1 year, pulses with 10²³-10²⁴ W cm⁻² available at $\lambda = 1 \ \mu m$
- Strength parameter

$$a = \frac{\text{Larmor frequency}}{\text{wave frequency}}$$
$$= eE\lambda/mc^{2}$$
$$= 855\sqrt{I_{24}\lambda_{\mu m}^{2}}$$

Strong field QED: in electron rest frame $E' \approx \gamma E \sim E_{crit} (2I_{24}\lambda_{\mu m})$

Pair production using lasers I

'Standard' method, laser incident on solid surface:

- electrons accelerated to few MeV in burn-off layer
- enter high-Z foil and make gamma-rays by bremsstrahlung
- these produce pairs by Bethe-Heitler process in electrostatic field of nuclei

Pair production using lasers I

'Standard' method, laser incident on solid surface:

- electrons accelerated to few MeV in burn-off layer
- enter high-Z foil and make gamma-rays by bremsstrahlung
- these produce pairs by Bethe-Heitler process in electrostatic field of nuclei
- Laser used as accelerator, foil used as target
- Works at relatively low intensity ($\sim 10^{20}~{\rm W\,cm^{-2}})$
- Low efficiency ($< 10^{-5}$ of laser pulse goes into pairs)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pair production using lasers II

SLAC experiment (Burke et al 1997):

- \sim 50 GeV electrons enter laser beam ($a \sim$ few) and scatter photons to \sim GeV (NL Compton)
- these photons produce pairs by scattering on laser photons (NL Breit-Wheeler process)

・ロト・日本・日本・日本・日本

Pair production using lasers II

SLAC experiment (Burke et al 1997):

- \sim 50 GeV electrons enter laser beam ($a \sim$ few) and scatter photons to \sim GeV (NL Compton)
- these photons produce pairs by scattering on laser photons (NL Breit-Wheeler process)

- SLAC accelerates, laser used as target
- relatively few pairs

Trajectory in a plane wave

- Figure-of-eight in linearly polarized wave
- Periodic in a special frame (ZMF) with $\gamma \sim a$

Trajectory in a plane wave

- Figure-of-eight in linearly polarized wave
- Periodic in a special frame (ZMF) with $\gamma \sim a$
- If picked up at rest in lab. frame, particle recoils
- ZMF reached by boost in direction of wave, with Lorentz factor ≈ a

Trajectory in a plane wave

- Figure-of-eight in linearly polarized wave
- Periodic in a special frame (ZMF) with $\gamma \sim a$
- If picked up at rest in lab. frame, particle recoils
- ZMF reached by boost in direction of wave, with Lorentz factor ≈ a
- Boost to ZMF red-shifts ν by factor ~ a
- In ZMF, fields weaker: E' ~ E/a, B' ~ B/a

Introduction	Method	Results	Summary/Outlook

- E-M wave in \hat{z} direction
- \boldsymbol{E} along $\hat{\boldsymbol{x}}$
- *E* = −*2* × *B* Lorentz force vanishes for *v* → *c2*
- Interaction reduced governed by perpendicular acceleration

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Method	Results	Summary/Outlook

- E-M wave in \hat{z} direction
- E along \hat{x}
- *E* = −*2* × *B* Lorentz force vanishes for *v* → *c*2
- Interaction reduced governed by perpendicular acceleration
- More precisely, by

$$egin{array}{rcl} \eta &=& (\hbar/m^2c^3)\sqrt{(\mathrm{d}p^\mu/\mathrm{d} au)(\mathrm{d}p_\mu/\mathrm{d} au)} \\ &=& (e\hbar/m^3c^4)\,|F^{\mu
u}p_\mu| \\ &=& \underbrace{E/E_{\mathrm{crit}}}_{\mathrm{in \ pick-up\ frame}} |\cos\phi| \end{array}$$

Introduction	Method	Results	Summary/Outlook

- E-M wave in \hat{z} direction
- E along \hat{x}
- *E* = −*2* × *B* Lorentz force vanishes for *v* → *c2*
- Interaction reduced governed by perpendicular acceleration
- More precisely, by

$$\eta = (\hbar/m^2 c^3) \sqrt{(dp^{\mu}/d\tau)(dp_{\mu}/d\tau)}$$

= $(e\hbar/m^3 c^4) |F^{\mu\nu}p_{\mu}|$
= $\underbrace{E/E_{\text{crit}}}_{\text{in pick-up frame}} |\cos \phi|$

Laser beam plays the role of accelerator (to $\gamma \approx a$) and $\gamma \approx a \approx 2$

Counter-propagating beams

 Circular polarization: simple orbit at B = 0 node Bell & Kirk 2008:

$$eE/\gamma mc = \omega_{\text{laser}}$$

$$\eta = \gamma E/E_{\text{crit}}$$

$$= 3.6 l_{24} \lambda_{\mu m}$$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Counter-propagating beams

 Circular polarization: simple orbit at B = 0 node Bell & Kirk 2008:

$$eE/\gamma mc = \omega_{\text{laser}}$$

$$\eta = \gamma E/E_{\text{crit}}$$

$$= 3.6 I_{24} \lambda_{\mu m}$$

• Limited by radiation reaction when

$$\gamma > \gamma_{\rm RR} = \sqrt{3E_{\rm crit}/2\alpha_{\rm f}E}$$

 $\Rightarrow I_{24} > 0.13 \lambda_{\mu \rm m}^{-4/3}$

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Counter-propagating beams

 Circular polarization: simple orbit at B = 0 node Bell & Kirk 2008:

$$eE/\gamma mc = \omega_{\text{laser}}$$

$$\eta = \gamma E/E_{\text{crit}}$$

$$= 3.6 I_{24} \lambda_{\mu \text{m}}$$

• Limited by radiation reaction when

$$\gamma > \gamma_{\rm RR} = \sqrt{3E_{\rm crit}/2\alpha_{\rm f}}E$$

 $\Rightarrow I_{24} > 0.13 \lambda_{\mu \rm m}^{-4/3}$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

э

Coherence length

- $\sin \theta < 1/\gamma$ \Rightarrow $\ell_{\rm coh} = mc^2/eE$
- Field quasi-static if

$$\ell_{
m coh} \ll \lambda$$
 $\Rightarrow \quad a \gg \quad 1$

Identical requirement in QED

Coherence length

- $\sin \theta < 1/\gamma$ \Rightarrow $\ell_{\rm coh} = mc^2/eE$
- Field quasi-static if

$$\ell_{\rm coh} \ll \lambda$$
 $\Rightarrow a \gg 1$

Identical requirement in QED

 \Rightarrow instantaneous, local transition rates at each point on classical trajectory for $a \gg 1$

Introduction	Method	Results	Summary/Outlook
Weak field	approximation		

• In quasi-static limit transition rates depend on

- η for electrons, and $\chi = e\hbar^2 |F^{\mu\nu}k_{\nu}|/2m^3c^4$ for photons
- field invariants $f = E^2 B^2$ and $g = E \cdot B$ (both ~ 10⁻⁶ I_{24})

Introduction	Method	Results	Summary/Outlook
Maak field	approvimation		

- In quasi-static limit transition rates depend on
 - η for electrons, and $\chi = e\hbar^2 |F^{\mu\nu}k_{\nu}|/2m^3c^4$ for photons
 - field invariants $f = \vec{E}^2 B^2$ and $g = \vec{E} \cdot \vec{B}$ (both ~ 10⁻⁶ I_{24})

• In $\gamma\text{-ray}$ and pair production regime ($\eta\sim$ 1, $\chi\sim$ 1) rates depend only on η and χ

Introduction	Method	Results	Summary/Outlook

Weak field approximation

- In quasi-static limit transition rates depend on
 - η for electrons, and $\chi = e\hbar^2 |F^{\mu\nu} k_{\nu}| / 2m^3 c^4$ for photons
 - field invariants $f = \vec{E}^2 B^2$ and $g = \vec{E} \cdot \vec{B}$ (both ~ 10⁻⁶ I_{24})

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- In $\gamma\text{-ray}$ and pair production regime ($\eta\sim$ 1, $\chi\sim$ 1) rates depend only on η and χ
- Equivalent system:
 - static, homogeneous **B**,
 - electron/photon with $\boldsymbol{p} \cdot \boldsymbol{B} = 0$,
 - in limit $\gamma \to \infty$, $B \to 0$, with η , χ held constant

Introduction	Method	Results	Summary/Outlook

Weak field approximation

- In quasi-static limit transition rates depend on
 - η for electrons, and $\chi = e\hbar^2 |F^{\mu\nu} k_{\nu}| / 2m^3 c^4$ for photons
 - field invariants $f = E^2 B^2$ and $g = E \cdot B$ (both ~ 10⁻⁶ I_{24})
- In $\gamma\text{-ray}$ and pair production regime ($\eta\sim$ 1, $\chi\sim$ 1) rates depend only on η and χ
- Equivalent system:
 - static, homogeneous **B**,
 - electron/photon with $\boldsymbol{p} \cdot \boldsymbol{B} = 0$,
 - in limit $\gamma \to \infty$, ${\it B} \to$ 0, with η , χ held constant

Magneto-bremsstrahlung and single-photon (magnetic) pairproduction — computed in 1950's (Klepikov, Erber...)

(日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 善臣・のへで

Introduction	Method	Results	Summary/Outlook
Shaped pu	lses		

- Model pulses in cylinder of radius λ
- Integrate classical equations of motion (including radiation reaction)
- Evaluate intensity of synchrotron radiation
- Compute number of pairs produced per electron

Circularly polarized beams

Beam intensity $6 \times 10^{23} \text{ W cm}^{-2}$

- B = 0 node unstable
- *E* = 0 node stable
- Pair production negligible

・ロット (雪) (日) (日)

Aligned, linearly polarized beams

Beam intensity $6 \times 10^{23} \ \mathrm{W \, cm^{-2}}$

- Stable node less important
- Pair production significant

・ロット (雪) (日) (日)

Crossed, linearly polarized beams

Crossed linear polarization

Summary/Outlook	utlook
Summary/Outlook	

Present work

- Classical trajectories adequate ($\eta < 1$)
- Physical processes: synchrotron radiation, magnetic pair production (a >> 1)
- $\bullet\,$ Counter-propagating beams in under-dense plasma likely to produce pair avalanche at beam intensity $10^{24}~{\rm W\,cm^{-2}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Introduction	Method	Results	Summary/Outlook

Summary/Outlook

Present work

- Classical trajectories adequate ($\eta < 1$)
- Physical processes: synchrotron radiation, magnetic pair production (a >> 1)
- $\bullet\,$ Counter-propagating beams in under-dense plasma likely to produce pair avalanche at beam intensity $10^{24}~{\rm W\,cm^{-2}}$
- Improvements
 - Discreteness of radiation reaction ("stragglers") could be important (Shen & White 1971)
 - Monte-Carlo treatment of cascade needed
 - Reflected wave from laser-solid interaction? Hybrid P.I.C.+Monte-Carlo code needed