Cosmic positron and electron excesses:

is the dark matter solution a good bet?

(principles, backgrounds,

effect of cosmological subhalos

and uncertainties)

Julien Lavalle

(Dept of Theoretical Physics, University of Turin) Refs (arXiv) : 0603796, 0712.0468, 0709.3634, 0704.2543, 0808.0332, 0809.5268, 0902.3665 <u>Collab</u>: Delahaye, Salati, Taillet (LAPTH) – Maurin (LPNHE) – Nezri (LAM) Ling (Brussels) – Donato, Fornengo, Lineros (Turin) – Bi, Yuan (Beijing) – Bringmann (Stockholm) <u>LLR - École Polytechnique — Palaiseau</u>

Thursday, May 18 $^{
m th}$ 2009

- 6 General introduction
- 6 Why antimatter ?
- 6 The positron excess: standards and non standards
- 6 Computing the odds of the Galactic Lottery: clumpiness boost factors
 - Cosmological sub-halos: Analytical vs N-body approach
- 6 Conclusion

The Dark Matter problem :

connecting cosmological to microscopic scales

Cosmological data (WMAP, etc) :

 $\Omega_{
m matter} \sim 0.3$ $\Omega_{\Lambda} \sim 0.7$

85% of the matter is of unknown origin (non-baryonic)→ New particles or modified gravity. WIMPs naturally arise from beyond standard model theories (SUSY, ED), without asymmetry matter/antimatter

6 Relic density (thermal hypothesis):

$$\Omega_{\chi} \propto rac{1}{\langle \sigma v \rangle} \propto rac{m_{
m EW}^2}{g_{
m EW}^4}$$

- DM couples to standard matter (direct detection)
- Annihilation in high density regions (indirect detection)

Detection methods

If dark matter couples to ordinary matter, it could be detected thanks to:

- Particle colliders: (LHC!)
 (no difference between any meta-stable particle and a wimp)
- Direct detection: (many!)
 (mainly sensitive to scalar interactions and low wimp masses)
- Indirect detection:
 (HESS, PAMELA, GLAST)
 (γ-rays, antimatter cosmic rays, neutrinos)

Detection methods

If dark matter couples to ordinary matter, it could be detected thanks to:

- Particle colliders: (LHC!)
 (no difference between any meta-stable particle and a wimp)
- Direct detection: (many!)
 (mainly sensitive to scalar interactions and low wimp masses)
- Indirect detection:
 (HESS, PAMELA, GLAST)
 (γ-rays, antimatter cosmic rays, neutrinos)

Complementary searches are mandatory for consistent answers

Supersymmetry

- △ neutralino (MSSM & mCHOUGRA) DM: → $b\bar{b}$ ($t\bar{t}$), W^+W^- , ZZ, marginally l^+l^- (small slepton masses)
- ▲ gravitino (GMSB & mCHOUGRA) DM & SUSY breaking & nucleosynthesis:
 → phenomenology of nLSP
- △ sneutrino (MSSM) DM & neutrino masses & leptogenesis: $\rightarrow \nu \bar{\nu}, W^+W^-$

6 Extra-dimensions

- ▲ LKP (UED) DM:
 - $ightarrow l^+l^-$ (60%), up qar q (35%)
- △ LZP (warped GUT) DM:
 - \rightarrow (depends on LZP mass and KK scale)

6 Other (minimal) models

Inert doublet model, little Higgs, light DM, etc.

Indirect detection of Dark Matter

Non-baryonic DM may explain a large fraction of the masses of galaxies and clusters: If made of exotic annihilating particles, we might detect indirect signatures by means of astronomical device

- 6 γ and ν : travel directly from the source to the observer
- 6 Antimatter cosmic rays: diffuse on the magnetic turbulences

 \implies Needs of large DM density regions

(Centers of galaxies)

of Dark Matter Non-baryonic and clusters: If made of exoti neans of astronomical devi $rac{d\phi_{ m prim}}{dE}$ $= \quad \delta \frac{B_{\rm prim} \times \langle \sigma v \rangle}{8\pi m_{\nu}^2}$ $\times \int dE_S \int d^3\vec{x}_S \mathcal{G}(\vec{x}_{\odot}, E \leftarrow \vec{x}_S, E_S) \times \rho_{\rm mn}^2(\vec{x}_S) \times \frac{dN_{\rm prim}}{dE_S}$ S esy P. Salati 6 γ and ν : the to the observ density regions es) Antimatter cosmic magnetic turbulences

Julien Lavalle, LLR Palaiseau, 18/V/2009 - p. 6

Before inferring an excess from the data, one needs to:

- 6 properly estimate the secondary positron background;
- 6 properly measure the electron flux (prediction not necessary if measurements!!!);
- 6 ++++ theoretical uncertainties !!!

Sub-TeV Cosmic ray propagation in the Galaxy

cf. e.g. Berezinsky (1990)

6 Cylindrical diffusive halo :

 $R \sim 20 \mathrm{kpc}, \mathrm{L} \sim 3 \mathrm{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.

- **Gaseous disc** $(h \sim 0.1 \text{kpc})$: spallation + convection upside down.
- **6 free parameters**: $K(E), L, R, V_C, V_A$ (Figure by D. Maurin)

cf. e.g. Berezinsky (1990)

- 6 Cylindrical diffusive halo : $R \sim 20 \text{kpc}, L \sim 3 \text{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.
- 6 Gaseous disc ($h \sim 0.1 \text{kpc}$) : spallation + convection upside down.
- 6 free parameters: $K(E), L, R, V_C, V_A$ (Figure by D. Maurin)

Diffusion equation for $e^{+/-}$ or $par{p}$

 $e^{+/-}$, *cf.* Bulanov & Dogel 73, Baltz & Edsjö 98, Lavalle et al 07, Delahaye et al 08 Nuclei, *cf.* Strong et al (98-08), Maurin et al (01-08)

$$\partial_{t} \frac{dn}{dE} = Q(E, \vec{x}, t) \\ + \left\{ \vec{\nabla} (K(E, \vec{x}) \vec{\nabla} - \vec{V_{c}}) \right\} \frac{dn}{dE} \\ - \left\{ \partial_{E} \left(\frac{dE}{dt} - \partial_{E} E^{2} K_{pp} \partial_{p} E^{-2} \right) \right\} \frac{dn}{dE} \\ - \left\{ \Gamma_{spal}(E) \right\} \frac{dn}{dE}$$

source: injected spectrum

spatial current: diffusion and convection $K(E) = K_0 \left(\frac{E}{E_0}\right)^{\alpha}$ $\vec{V}_c(z) = sign(z) \times V_c \vec{e}_z$

Energy losses and reacceleration

spallation (nuclei)

Uncertainties and degeneracies in parameters (Maurin et al 01)

(Complementary & full numerical: Galprop, Strong et al)

Energy-dependent diffusion scales for e^+ and \overline{p}

\bullet e^+ s lose energy:

survey larger and larger volumes when detected at lower and lower energies

→ importance of energy loss parameters: magnetic field, interstellar radiation field.

F's do not lose energy, but convective wind and spallation processes very efficient at low energy:

survey larger volume at high energies

Energy-dependent diffusion scales for e^+ and \overline{p}

 $\bigcirc e^+$ s lose energy:

survey larger and larger volumes when detected at lower and lower energies

→ importance of energy loss parameters: magnetic field, interstellar radiation field.

6 p's do not lose energy, but convective wind and spallation processes very efficient at low energy: survey larger volume at high ener-

survey larger volume at high energies

Prediction of the secondary e^+ flux and uncertanties

PAMELA: to predict the e^+ fraction, we need $e^-s!$

PAMELA excess: standard candidates?

THE ASTROPHYSICAL JOURNAL, 342:807-813, 1989 July 15

() 1989. The American Astronomical Society, All rights reserved. Printed in U.S.A.

THE NATURE OF THE COSMIC-RAY ELECTRON SPECTRUM, AND SUPERNOVA REMNANT CONTRIBUTIONS

AHMED BOULARES Physics Department, Space Physics Laboratory, University of Wisconsin–Madison Received 1988 October 24; accepted 1988 December 29 Among other works: Aharonian et al (1995) Zhang & Cheng (2001) Profumo (2009) Blasi (2009)

Hooper et al arXiv:0810.1527

BOULARES

PAMELA excess: standard candidates?

Among other works: Aharonian et al (1995) Zhang & Cheng (2001) Profumo (2009) Blasi (2009)

Hooper et al arXiv:0810.1527

Julien Lavalle, LLR Palaiseau, 18/V/2009 - p. 14

PAMELA excess: standard candidates?

Among other works: Aharonian et al (1995) Zhang & Cheng (2001) Profumo (2009) Blasi (2009)

Hooper et al arXiv:0810.1527

Julien Lavalle, LLR Palaiseau, 18/V/2009 - p. 14

Dark matter: generic predictions (smooth halo)

For
$$\chi\chi \to e^+e^-$$
 (limit $E \to m_{\chi} = 100$ GeV). From PAMELA, the excess is $\lesssim 5 \times \phi_{bg}(100 \text{ GeV})$.
 $\phi_{bg}(100 \text{ GeV}) \simeq 3 \cdot 10^{-10} \left(\frac{E}{100 \text{ GeV}}\right)^{-3.5} \text{ cm}^{-2} \cdot \text{s}^{-1} \cdot \text{GeV}^{-1} \cdot \text{sr}^{-1}$
 $\phi_{\chi\chi}(E \to m_{\chi}) \simeq \frac{\delta\beta c}{4\pi} \frac{\tau E_0}{E^2} \frac{\langle \sigma v \rangle}{2} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^2$
 $\simeq 3 \cdot 10^{-10} \left(\frac{\tau}{10^{16} \text{s}}\right) \left(\frac{\rho_{\odot}}{0.3 \text{ GeV/cm}^3}\right) \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^4 \left(\frac{\langle \sigma v \rangle}{3 \cdot 10^{-26} \text{ cm}^3/\text{s}}\right)$
For $m_{\chi} \simeq 100$ GeV, need for an amplification of: $\mathcal{B} \simeq 5$.
 $= \frac{e^* \text{ from WIMPs}}{e^* \text{ line}}$
 $= \frac{b\overline{b}}{B_0 \text{ Delos}}$
 $= \frac{b\overline{b}}{B_0 \text{ Delos}}$

÷

Dark matter: generic predictions (smooth halo)

Boost to get $\sim 5 imes \phi_{
m bg}$ at \sim 100 GeV:

WIMP mass	100 GeV	500 GeV	1 TeV
final state			
e^+e^-	5	100	350
W^+W^-	80	500	1000
$b \overline{b}$	250	500	1000

PAMELA excess: dark matter?

Possible, but **needs huge annihilation rate**. Several limits exists.

If dark matter annihilates into quarks or heavy bosons

- 6 gamma-rays (next slide)
- antiprotons(cf Donato et al arXiv:0810.5292)

If dark matter annihilates into leptons:

- gamma-rays (cf next slide)
- radio emission from GC(cf Bergström et al arXiv:0812.3895)

In any case, boosting the annihilation rate is a serious issue.

PAMELA excess: nearby dark sources?

Dark point sources (IMBHs, big clumps) ...

but conventional scenarios excluded by EGRET+Fermi

Single DM object wandering around

PAMELA excess: nearby dark sources?

Dark point sources (IMBHs, big clumps) ...

but conventional scenarios excluded by EGRET+Fermi

Any single DM object wandering around

Bringmann, Lavalle & Salati arXiv:0902.3665

PAMELA excess: nearby dark sources?

Dark point sources (IMBHs, big clumps) ... but conventional scenarios **excluded by EGRET+Fermi**

Bringmann, Lavalle & Salati arXiv:0902.3665

Inhomogeneous halo

and boosted annihilation rate

(Fig. from Diemand et al, MNRAS'04)

- Though the topic is controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of ΛCDM)
- Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)
- The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$
- There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

Inhomogeneous halo

and boosted annihilation rate

If unclumpy: $\rho_{\rm DM}^{\rm smooth}(\vec{x}) = \rho(\vec{x})$

Otherwise: $\rho_{\text{DM}}^{\text{clumpy}}(\vec{x}) = (1 - f)\rho(\vec{x}) + \sum_{i}^{N} M_{\text{cl},i} \times \delta^{3}(\vec{x} - \vec{x}_{i})$

Effective boost $B_{\rm eff} \approx (1-f)^2 + \frac{\sum_i^N \phi_{\rm cl,i}}{\phi_{\rm smooth}}$

6 Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)

- 6 The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$
- 6 There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

The annihilation signal is integrated

Courtesy P. Salati

- 6 over a small solid angle around the line of sight for γ -rays and neutrinos
- over a rather small volume around the Earth for antimatter CRs, due to diffusion processes

 \implies **Boost factors are not the same !**

Effective volume picture for the smooth contribution Inject a 200 GeV e^+ with $Q(r) = \rho^2(r) \propto r^{-2}$...

Effective volume picture for the smooth contribution Inject a 200 GeV e^+ with $Q(r) = \rho^2(r) \propto r^{-2}$...

Simplest view of propagation

$$G \propto \exp\left(-\frac{|\vec{x}_S - \vec{x}_{\odot}|^2}{\lambda_D^2}\right)$$

with $\lambda_D = \sqrt{4K_0\Delta \tilde{t}} = f(E_S, E_D)$

 \rightarrow Detection volume scaling a sphere of radius λ_D

Figures: galactic plane at z=0 kpc x and y from -20 to 20 kpc Earth located at (x = 8, y = 0) kpc 2D plots of $G(\vec{x}, 200 \text{GeV} \rightarrow \tilde{x}_{\odot}, \text{E}) \times \rho^2$

Julien Lavalle, LLR Palaiseau, 18/V/2009 - p. 21

Many-object method:

Define the phase space of substructures

The phase space distribution depends on two main quantities:

- 6 the **spatial distribution** of objects
- 6 the luminosity function of objects

$$\frac{dn_{\rm cl}}{d\mathcal{L}}(\mathcal{L},\vec{x}) = \frac{dN_{\rm cl}}{dV\,d\mathcal{L}}(\mathcal{L},\vec{x}) = N_0 \times \frac{d\mathcal{P}}{dV}(\vec{x}) \times \frac{d\mathcal{P}}{d\mathcal{L}}(\mathcal{L},\vec{x})$$

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Boost for antimatter CRs:

- 6 Long believed to be simple rescaling of fluxes ...
- 6 This picture is wrong. Due to propagation effects, *boost* is a non-trivial function of energy (J.L, Pochon, Salati & Taillet, 2006).
- 6 Variance depends on the number of clumps within the volume bounded by diffusion length λ_D : increases when the population when λ_D decreases $(\sim 1/\sqrt{N_{\rm eff}})$.
- 6 The recipe applies to any kind of sources
- In the second second

Primary fluxes for a 200 GeV e^+ line / antiprotons

Boost factors for a 200 GeV e^+ line / antiprotons

Boost factors for a 200 GeV e^+ line / antiprotons

implementing tools for γ -rays and cosmic rays

(PRD 78 (2008)

Lavalle, Nezri, Ling, Athanassoula & Teyssier)

- 6 N-body data from the HORIZON Project (Teyssier, 2002) – $M_{\rm res} = 10^6 M_{\odot}$; $L_{\rm res} = 200 \ {\rm pc}$
- Analysis already made for γ-rays (arXiv:0801.4673) – but not as good as Diemand et al(2008) or Springel et al (2008)
- 1st trial for GCRs: study of the effects due to actual density fluctuations and departure from spherical symmetry

Results: \sim 1-2 order of magnitude uncertainty on antimatter flux (local density fluctuations or asphericity), but still below the data: no excess expected below 100 GeV.

Athanassoula, Ling, Nezri & Teyssier (arXiv:0801.4673)

implementing tools for γ -rays and cosmic rays

implementing tools for γ -ravs and cosmic ravs

Earth at different positions (8 kpc)

Julien Lavalle, LLR Palaiseau, 18/V/2009 – p. 27

implementing tools for γ -ravs and cosmic ravs

implementing tools for γ -ravs and cosmic ravs

CAVEATS: too simplistic galaxy model?

Rotation curves with baryon contribution (COBE/DIRBE inferred) subtracted (Englmaier & Gerhard 2006)

Exotic + standard cosmic ray study Lavalle, Ling, Nezri & Teyssier (in prep)

Cosmic Rays:

the necessity/tools to understand the backgrounds

Sources / Transport / Backgrounds

Cosmic Rays:

the necessity/tools to understand the backgrounds

6 Dark Matter: a link between LHC physics, astrophysics and cosmology

On the positron fraction:

- **6** Standard sources are likely enough
- Dark matter may contribute, but needs very specific properties (strong couplings to leptons, Sommerfeld enhancement)
- Nearby dark sources or clumpiness enhancement are strongly disfavored
- 6 Hard to infer a dark matter origin when astrophysical sources explain the observations easily
- 6 Need much better estimates of theoretical uncertainties!!! (sources & propagation)
- 6 Need much better constraints on propagation parameters: PAMELA, Fermi results (e.g. CREAM, AMS-02 later)
- **6** Complementarity with other messengers (γ, \overline{p}) and detection methods! In particular, γ -rays from Dwarph spheroidals or antideuterion cosmic rays ... and LHC!