

Summary and Conclusions

P. Muggli and M.J. Hogan, Comptes Rendus Physique, 10(2-3), 116 (2009). P. Muggli, 09/21/09

OUTLINE

PARTICLE ACCELERATORS

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

- Some of the largest and most complex (and most expensive) scientific instruments ever built!
- \rightarrow All use rf technology to accelerate particles

Can we make them smaller (and cheaper) and with a higher energy?
P. Muggli, 09/21/09

Linear accelerator to avoid synchrotron radiation limitation $(\sim \gamma^4/r^2 \sim E^4/m^4r^2)$

Energy frontier: 1-3 TeV, e⁻/e⁺

Accelerator length with (cold) rf technology:

1 TeV — >20 km/side! <50 MeV/m

Pillbox Cavity

Is there a high-gradient alternative to rf technology? Plasmas?

WHY PLASMAS?

Relativistic Plasma Wave (Electrostatic):

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad k_p E_z = \frac{\omega_{pe}}{c} E_z = \frac{n_e e}{\varepsilon_0}$$

$$\underline{E}_z = \left(\frac{m_e c^2}{\varepsilon_0}\right)^{1/2} n_e^{1/2} \approx 100 \sqrt{n_e (cm^{-3})} = 1 \frac{GV/m}{n_e} = 10^{14} \text{ cm}^{-3}$$
"Cold Wavebreaking" Field

"Cold Wavebreaking" Field

LARGE **Collective response!**

Plasmas can sustain very large (collective) E₇-field, acceleration Plasmas are already (partially) ionized, difficult to "break-down" High gradient, high energy plasma accelerator? Yes Plasmas wave or wake can be driven by: Intense laser pulses (LWFA)

Short particle bunch (PWFA)

- Plasma wave/wake excited by a relativistic particle bunch
- Plasma e⁻ expelled by space charge forces => energy loss + focusing
 - Plasma e⁻ rush back on axis => energy gain

 \Rightarrow Optimize for acceleration, focusing (plasma lens), radiation (β -tron)

Plasma Wakefield Accelerator (PWFA): high-frequency, high-gradient, strong focusing beam-driven accelerator

OUTLINE

- Motivation/Introduction
- Experimental results
 - e transverse dynamics (focusing)
 - $\Box \beta$ -tron radiation
 - acceleration
 - □ acceleration 〕 Short
 - \square β -tron radiation $\int e^{-}$ bunch
 - □ e⁺ transverse dynamics Long
 - e⁺ acceleration
 - Future at FACET
 - Multi-bunch, low energy PWFA results
 - Summary and Conclusions

Long e⁻ bunch

e⁺ bunch

PLASMA FOCUSING OF **e**⁻

Beam Envelope Model for Plasma Focusing

Multiple foci (betatron oscillation) within the plasma $\sigma_{x,y}(z)$ at fixed $n_e \Rightarrow \sigma_{x,y}(n_e)$ at fixed z

FOCUSING OF **e**⁻

OUTLINE

Experimental results

- e⁻ transverse dynamics (focusing)
- \square β -tron radiation
- acceleration
- □ acceleration 〕 Short
- $\square \beta$ -tron radiation $\int e^{-}$ bunch
- □ e⁺ transverse dynamics Long
- e⁺ acceleration
- Future at FACET
- Multi-bunch, low energy PWFA results
- Summary and Conclusions

e⁺ bunch

Energy gain smaller than, hidden by, incoming energy spread
 Time resolution needed, but shows the physics
 Peak energy gain: 279 MeV, L=1.4 m, ≈200 MeV/m
 P. Muggli, 09/21/09

OUTLINE

Long e⁻ bunch

- Multi-bunch, low energy PWFA results
- Summary and Conclusions

Courtesy of SPPS

Energy gain scales linearly with L_p, optimum n_e≈2.6x10¹⁷ cm⁻³
Experimental accelerating gradient: E_{acc}≈37 GeV/m (max. avg.)

e⁻ ENERGY DOUBLING I. Blumenfeld *et al.*, Nature 445, 2007

Dispersion [mm] Charge -16 -14-12 -10-8 density -18 $[-e/\mu m^2]$ **Energy Gain Energy Loss** a) 240 -3 Scalloping of the Beam -2 180 Position [mm] 120 60 b) Experiment Charge Density [-e/mm] Simulation 10 10 -3 · 10⁶ e/GeV 10 35 40 50 60 70 80 90 100 Electron Energy [GeV] $2E_0$

Energy doubling of e⁻ over L_p≈85 cm, 2.7x10¹⁷ cm⁻³ plasma
Unloaded gradient ≈52 GV/m (≈150 pC accel.)
P. Muggli, 09/21/09

e^+ FROM e^- β-TRON RADIATION

$$n_{e} = 10^{17} \ cm^{-3} \qquad \lambda_{\beta} \approx 0.035 \ m \qquad N_{\lambda_{\beta}} \approx 8 \left(L_{p} = 30 \ cm \right)$$
$$\hbar \omega_{c} (\propto n_{e}) \approx 10 \ MeV > 2m_{e}c^{2} \qquad \text{Produce e-/e+ pairs!}$$

Demonstration of a plasma wiggler e⁺ source

Excellent experiment/calculations agreement

OUTLINE

Long e⁻ bunch

- Future at FACET
- Multi-bunch, low energy PWFA results
- Summary and Conclusions

e⁻ & e⁺ BEAM NEUTRALIZATION, "FOCUSING

Transverse dynamics, emittance preservation?

3-D QuickPIC simulations, plasma e⁻ density:

L=2 mm

e⁻: n_{e0} =2×10¹⁴ cm⁻³, c/ω_p =375 μ m

- Uniform focusing force (r,z)
- Free of geometric aberrations
- Emittance preserved

- Non-uniform focusing force (*r*,*z*)
- Emittance growth?

EXPERIMENTAL SET UP

FOCUSING OF e⁻/e⁺

n_e≈10¹⁴ cm⁻³

 Ideal Plasma Lens in Blow-Out Regime

 Plasma Lens with Aberrations, Halo Formation

Excellent experimental/simulation results agreement!
 The beam is ≈round with n_e≠0
 P. Muggli, 09/21/09

P. Muggli, 09/21/09

P. Muggli *et al.*, PRL 101, 055001 (2008).

e⁺ ACCELERATION PRE-IONIZED, LONG BUNCH

Good agreement with numerical simulations

OUTLINE

Summary and Conclusions

Particles at all phase, large energy spread (100%)

2-BUNCH PWFA Focusing (E_r) $\Delta E/E_0 < 2$ Defocusing Decelerating (E_z) Accelerating $2E_0$ E_0 Witness Bunch: **Driver Bunch:** $E_0 => \geq 2E_0$ Dream! $E_0 \Rightarrow \approx 0$ Fake! Really important experiment! (psychologically) Not real!

- \rightarrow Driver bunch: high-charge (*3N*), modest emittance, shaped?
- ➡ Witness bunch: lower charge (N), good emittance, shorter beam loading for △E/E<<1</p>

TWO BUNCHES GENERATION

- Ultra-relativistic beams: NO dephasing
- NO new physics required

PWFA-LC CONCEPT (an example)

FACET*@SLAC: single, 1m-long, +25 GeV stage, e⁻ and e⁺

e⁻/e⁺ DRIVE/WITNESS TRAIN

Accelerate e⁺ bunch on e⁻-bunch driven wake

True injection of e⁺ bunch in high gradient plasma wake
 High current e⁺ bunches available at FACET only!!!
 Neutral e⁻/e⁺ beams in plasmas, astrophysics
 P. Muggli, 09/21/09

e⁺ Acceleration on **e⁻** Wake

Wang, PRL 101, 124801 (2008)

Test of e⁺ acceleration on e⁻ wake
 Injection on e⁺ on e⁻ wake

foil target

OUTLINE

- Experimental results
 - e⁻ transverse dynamics (focusing)

Long e⁻ bunch

e⁺ bunch

- \square β -tron radiation
- acceleration
- □ acceleration 〕 Short
- $\square \beta$ -tron radiation $\int e^{-}$ bunch
- □ e⁺ transverse dynamics] Long
- e⁺ acceleration
- Future at FACET
- Multi-bunch, low energy PWFA results
 - Summary and Conclusions

MULTIBUNCH PWFA

Transformer Ratio: $R = E_{\perp}/E_{\perp}$ Energy Gain: $\leq RE_{0}$ σ_r =125 μ m, n_e=1.8x10¹⁶ cm⁻³, λ_p =250 μ m E_0 : incoming energy Q=30 pC/bunch, $\Delta z=250 \ \mu m \approx \lambda_p$ $\Delta z=375 \ \mu m\approx 1.5 \lambda_p$ **Bunch Train** Ramped Bunch Train^{*} 200 200 R=7.89 R=1.11 75 45 Wakefield [MV/m] Wakefield [MV/m] 100 100 Q=15 Drive Beam Drive Beam -100 -100 Witness Witness Wakefield Wakefield -200 -200 2 5 6 2 5 6 7 7 3 4 3 4 Time [ps] Time [ps] Kallos, PAC'07 Proceedings *Tsakanov, NIMA, 1999

 \Rightarrow R=7.9 => multiply energy by \approx 8 in a single PWFA stage!

2-BUNCH PWFA

Transformer Ratio: $R = E_{\perp}/E_{\perp}$ Energy Gain: $\leq RE_{0}$ σ_r =125 μ m, n_e=1.8x10¹⁶ cm⁻³, λ_p =250 μ m E_0 : incoming energy Q=30 pC/bunch, $\Delta z=250 \ \mu m \approx \lambda_p$ $\Delta z=375 \ \mu m\approx 1.5 \lambda_p$ Bunch Train Ramped Bunch Train* 200 200 R=7.89 75 45 Wakefield [MV/m] Wakefield [MV/m] 100 100 Q=15 Drive Beam Drive Beam -100 -100 Witness Witness Wakefield Wakefield -200 -200 2 2 5 6 7 6 7 3 4 3 4 5 Time [ps] Time [ps] Kallos, PAC'07 Proceedings *Tsakanov, NIMA, 1999

Resonant excitation of wakefields
 Large transformer ratio and energy gain (>2)
 P. Muggli, 09/21/09

First large gradient acceleration of a witness bunch

MULTIBUNCH PWFA

Transformer Ratio: $R = E_{\perp}/E_{\perp}$ Energy Gain: $\leq RE_{0}$ σ_r =125 μ m, n_e=1.8x10¹⁶ cm⁻³, λ_p =250 μ m E_0 : incoming energy Q=30 pC/bunch, $\Delta z=250 \ \mu m \approx \lambda_p$ $\Delta z=375 \ \mu m\approx 1.5 \lambda_p$ Ramped Bunch Train* Bunch Train 200 200 R=7.89 75 45 Wakefield [MV/m] Wakefield [MV/m] 100 Q=15 Drive Beam Drive Beam -100 -100Witness Witness Wakefield **Vakefield** -200 -200 2 5 7 5 6 3 4 6 2 4 7 Time [ps] Time [ps] Kallos, PAC'07 Proceedings *Tsakanov, NIMA, 1999

Resonant excitation of wakefields
 Large transformer ratio and energy gain (>2)
 P. Muggli, 09/21/09

MULTI-BUNCH TRAIN

➡ E₀=59 MeV

N=1-5D + 1W, Δz=150-400 μm, σ_z≈Δz/2, Q≈40 pC/bunch

Perfect for PWFA, could be used for FEL, fs x-ray streak camera

Excellent test bed for FACET notch collimator

ACCELERATING FIELD

Linear calculation microbunches with equal charge

Expect ≈MeV energy gain/loss over 1 cm
Microbunch resonance clear, and narrow

ENERGY CHANGE

WRONG CHIRP!

OUTLINE

- Experimental results
 - e⁻ transverse dynamics (focusing)
 - \square β -tron radiation
 - acceleration
 - □ acceleration 〕 Short
 - $\square \beta$ -tron radiation $\int e^{-}$ bunch
 - □ e⁺ transverse dynamics Long
 - □ e⁺ acceleration
- Future at FACET
- Multi-bunch, low energy PWFA results
- Summary and Conclusions

Long e⁻ bunch

e⁺ bunch

Summary and Conclusions

Long e⁻, e⁺ Short e⁻

PWFA made remarkable progress

- e⁻ transverse dynamics (focusing)
- \square β -tron radiation
- acceleration

PWFA is well understood

☐ Many more results: multi-GeV trapped e⁻, emittance, ...

FACET@SLAC will address PWFA collider issues

¬ Acceleration of witness bunch ($\Delta E/E_0 \sim 1\%$)

□ e⁺ ...

Single, e⁻/e⁺, +25 GeV PWFA stage

PWFA physics can be tested/demonstrated at low energy

PWFA experiments broaden to astrophysics and ICF, fs x-ray streak camera, CSR mitigation, etc.

Collaborations:

I. Blumenfeld, F.-J. Decker, M. J. Hogan*, N. Kirby, R. Ischebeck. R. H. Iverson, R. H. Siemann and D. Walz Stanford Linear Accelerator Center

C. E. Clayton, C. Huang, C. Joshi*, W. Lu, K. A. Marsh, W. B. Mori and M. Zhou University of California, Los Angeles

T. Katsouleas, P. Muggli*, and E. Oz University of Southern California

M. Babzien, K. Kusche, J. Park, D. Stolyarov, V. Yakimenko Brookhaven National Laboratory, Upton, Long Island, NY

Thank you!

* Principal Investigators

Thank You! Plasma D Warning: measurement, Gain D not simulation! D D W 055

Work supported by US Dept. of Energy