Recherche du neutrino de Majorana et de la ββ0ν

Xavier Sarazin Séminaire LLR, Ecole Polytechnique, 30 Novembre 2009

Majorana Neutrino

Neutrino is the only fermion with Q = 0

 \Rightarrow Neutrino might be a Majorana particle $v = \overline{v}$

Only two v states:

$$|v_L, h=-1/2 > \longrightarrow |v_R, h=+1/2 >$$

Theorists already uses the Majorana neutrino in mechanisms beyond the Standard Model:

Leptogenesis in the Early Univers through the Majorana neutrino to produce the observed Mater/AntiMater asymetry

> See-saw mechanism to explain the small mass of the neutrino

Question: if antigravity exists, what appends for the Majorana neutrino ????

Standard $\beta\beta2\nu$ decay

La désintégration $\beta\beta0v$

If neutrino is a Majorana particle $\Rightarrow \beta\beta0\nu$ Process

Process $\Delta L = 2$

• Majorana neutrino exchange v = v

- Right Handed weak current
- Majoron production
- Exchange of SUSY particles

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} M_{0\nu}^2 \langle m_{\nu} \rangle^2$$

 $G_{0\nu}$ Phase space factor

 $M_{0\nu}$ Nuclear Matrix Element \Rightarrow Theoretical uncertainty

 $\langle m_{v} \rangle$ Effective mass $\langle m_{ee} \rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$

List of isotopes used in the $\beta\beta$ experiments

Isotope	$Q_{\beta\beta}(MeV)$	$G_{0\nu}(y^{-1})$
⁴⁸ Ca	4.271	2.44
⁷⁶ Ge	2.040	0.24
⁸² Se	2.995	1.08
⁹⁶ Zr	3.350	2.24
¹⁰⁰ Mo	3.034	1.75
¹¹⁶ Cd	2.802	1.89
¹³⁰ Te	2.528	1.70
¹³⁶ Xe	2.479	1.81
¹⁵⁰ Nd	3.367	8.00

Criteria for the best isotope

- ► High $Q_{\beta\beta}$ value for bkg suppression $E_{\gamma}(^{208}\text{Tl}) = 2.6 \text{ MeV}$ $Q_{\beta}(^{214}\text{Bi}) = 3.2 \text{ MeV}$
- ≻ High G_{0v}
- ≻ High M_{0v}
 - \Rightarrow uncertainty in the calculations
- High Mass
 - capacity of **enrichment**
 - Low Atomic mass A
- High efficiency of detection

$$(T_{1/2})^{-1} = G_{0\nu} M_{0\nu}^{2} \langle m_{\nu} \rangle^{2}$$
$$T_{1/2} = \ln 2 \frac{N_{ave} Mass}{A} \epsilon \frac{T_{obs}}{N_{excl}}$$

Natural radioactivity = Enemy of $\beta\beta0\nu$

Summary of the Nuclear Matrix Elements Calculation

Final Report of the N4 ILIAS Network (FP6 European Program)

 M_{0v} strongly depends on g_A = coupling constant of the Gamow-Teller interaction $\Rightarrow T_{1/2}(0v) \sim (g_A)^{-4}$ For both QRPA: the lower limit always corresponds to the free value g_A =1.25 and UCOM' short range corrections (s.r.c.) and the upper limit always corresponds to a strength quenched to g_A =1.00 and Jastrow' s.r.c. In β-decay, the strength is quenched to $g_A \sim 0.8 - 0.9$. ββ2v decay rates indicate also $g_A \sim 0.8 - 0.9$

Recent calculation using a third and independant approach: The Interacting Boson Model (IBM) *Barea and Iachello, Phys. Rev. C* 79, 044301 (2009)

They propose a very simple formulae for M_{0v} !

$$M_{0\nu} = 89 \; A^{2/3}$$

Is it a real behaviour or a bias due to the theoretical model ? QRPA has similar dependence, Shell Model is independent of A

Current best limits in $\beta\beta0\nu$ search

Isotope	Experiment	Technique	Mass of isotope	T _{1/2} (0v) Limit (90%)	<m<sub>v; QRPA</m<sub>	> (eV) Shell Model
⁴⁸ Ca	NEMO-3	Tracko-calo	7 g	> 1.3 10 ²²	-	21 – 29
⁷⁶ Ge	HeidelMosc. IGEX	Germanium semicond.	11 kg	> 1.5 10 ²⁵	0.26 - 0.65	0.53 – 0.64
⁸² Se	NEMO-3	Tracko-calo	1 kg	> 3.6 10 ²³	1.01 – 2.28	1.94 – 2.36
¹⁰⁰ Mo	NEMO-3	Tracko-calo	7 kg	> 1.1 10 ²⁴	0.51 – 1.04	-
¹¹⁶ Cd	Solotvina	CdWO ₄ Crystal Scintillator	80 g	> 1.7 10 ²³	1.45 - 3.13	2.06
¹³⁰ Te	CUORICINO	Bolometer	10 kg	> 3.0 10 ²⁴	0.34 – 0.64	0.54 - 0.68
¹³⁶ Xe	TPC Gothard	Gas TPC Xe	3.4 kg	> 4.4 10 ²³	1.31 – 3.15	1.67 – 2.10
¹⁵⁰ Nd	NEMO-3	Tracko-calo	37 g	>1.8 10 ²²	IBM: 2	2.9 – 5.1

• Shell Model: Caurier et al., Phys. Rev. Lett. 100 (2008)

Except ¹¹⁶Cd preliminary results (no s.r.c. correction): Private communication

• QRPA Tubingen: Simkovic et al., Phys. Rev. C 77 (2008)

• QRPA Jyvaskyla: Suhonen et al. Int. J. Mod. Phys. E 17 (2008) 1

Except ⁷⁶Ge: recent calculation with neutron occupancies: Suhonen et al., Phys. Lett. B 668 (2008) 277

• IBM: Barea et al., Phys. Rev. C. 79, 044301 (2009)

Current best limits in $\beta\beta0v$ search

State-of-the-art: Limit ... or claim?

Heidelberg-Moscow experiment

- 5 HPGe crystal with enriched ⁷⁶Ge (~10 kg) running $1990 2003 \Rightarrow 71.7$ kg.y
- Bkg ~ 0.11 cts/(keV.kg.y)
- Part of the collaboration claims 4.2σ $\beta\beta0\nu$ signal (NIM A 522 (2004) 371, PLB 586) Best fit: $T_{1/2}(\beta\beta0\nu) = 1.2 \ 10^{25} \text{ y}$

(reject multi-compton events)

Significance and $T_{1/2}$ depends on background description

Recent analysis of the origin and description of background done by O. Chkvorets (arXiv:0812.1206)

Peak significant (without PSA) 1.3σ $T_{1/2} = 0.4 - 4.0 \ 10^{25}$ years (68% C.L.)

Ge claim and limits from other experiments

Heidelberg-Moscow claim: $T_{1/2}(\beta\beta0\nu) = 0.4 - 4.0\ 10^{25}$ y (68% C.L.) IGEX limit: $T_{1/2}(\beta\beta0\nu) \ge 1.1\ 10^{25}$ y

Overview of experiments

Name	Nucleus	Mass*	Method	Location	Time line		
Operational & recently completed experiments							
CUORICINO	Te-130 11 kg bolometric LNGS 20				2003-2008		
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010		
		Construction	n funding				
CUORE	Te-130	200 kg	bolometric	LNGS	2012		
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)		
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)		
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011		
	Substa	ntial R&D fund	ling / prototyping		_		
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009		
Majorana	Ge-76	26 kg	ionization	SUSL	2012		
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013		
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)		
	R&	D and/or conc	eptual design				
CARVEL	Ca-48	tbd	scintillation	Solotvina			
COBRA	Cd-116, Te-130	tbd	ionization	LNGS			
DCBA	Nd-150	tbd	drift chamber	Kamioka			
EXO gas	Xe-136	tbd	gas TPC	SNOlab			
MOON	Mo-100	tbd	tracking	Oto			

The GERDA Experiment

Next generation ⁷⁶Ge ββ experiment at Gran Sasso **Under installation – Commissioning Jan. 2010**

Operation of bare ⁷⁶Ge diodes in ultrapure cryogenic liquid Argon

Background rejection

• Heidelberg-Moscow:

bkg~0.1 cts/(keV.kg.y)

• This bkg seems to be produced by external γ

• Goal of GERDA: achieve an ultimate bkg ~ 0.001 cts/(keV.kg.y)

The GERDA Experiment

A stainless steel cryostat (25 t, U/Th \leq 5 mBq/kg) with internal Cu shield (20 t, U/Th \leq 16 µBq/kg) will contain 100 tones of LAr, ²²²Rn = \leq 1 µBq/m³. The cryostat is immersed in a water tank (590 t of water)

The Ge detector array is made up of individual detector strings and is situated in the central part of the **cryostat**

Phase I • All 8 existing and reprocessed enriched detectors from previous Heidelberg-Moscow and IGEX experiments \Rightarrow In total 18 kg of ⁷⁶Ge

• And 6 reprocessed natural HPGe detectors \Rightarrow In total 15 kg of ^{Nat}Ge

Phase II • The new BeGe (or segmented) detectors with PSA bkg rejection, made from recently produced enriched ⁷⁶Ge material added (> 20kg of ⁷⁶Ge) \Rightarrow In total 40 kg of ⁷⁶Ge + 15 kg of ^{Nat}Ge

The GERDA Experiment

The GERDA Installation @ LNGS

3400 m.w.e

underground

INFIN

Detector string Glove box & lock Clean room Cryostat & µ-veto Heat exchanger & pipes

The GERDA R&D

Testing of naked HPGe detectors in Liquid Argon

Long-term stability tests (3 HPGe detectors in LN2/LAr during 2 years)

tested in liquid Argon FWHM ~2.5keV (at 1332keV), leakage current stable

Problems reported from GENIUS-TF

[H.V.Klapdor-Kleingrothaus end I.Krivosheina, NIM A556 (2006) 472]

have been overcome by GERDA.

Long term stability for > 1 year. Detector performances are stable in LAr !

The GERDA R&D

Novel Ge-detectors with advanced 0vββ-signal recognition & background suppression

Segmented detectors

0vββ: point-like events

- Bgd: multi-site or partial energy deposition outside crystal
- LAr scintillation read out

BeGe detectors

228Th all events -5000 after PSD cut -0vββ-like 4500 Number of counts 4000 γ-bgd n-type detectors 3500 3000 DFP with 18-fold 2500 89.2% +0.9% segmented 2000 electrodes 10.1% 1500 ±0.7% 000 **Double-escape peak** 800 500 Amplitude [a.u.] 0 ββ0v-like 1580 1600 1620 1640 1560 djas et al. IEEE 2008 Energy [keV] А 500 -5000 1000 1500 Time after trigger [ns]

5500

Overview of experiments

Name	Nucleus	Mass*	Method	Location	Time line	
	Operational & recently completed experiments					
	Te-130	11 kg	bolometric	LNGS	2003-2008	
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010	
		Construction	funding			
CUORE	Te-130	200 kg	bolometric	LNGS	2012	
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)	
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)	
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011	
	Substantial R&D funding / prototyping					
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009	
Majorana	Ge-76	26 kg	ionization	SUSL	2012	
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013	
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)	
	R&	D and/or conc	eptual design			
CARVEL	Ca-48	tbd	scintillation	Solotvina		
COBRA	Cd-116, Te-130	tbd	ionization	LNGS		
DCBA	Nd-150	tbd	drift chamber	Kamioka		
EXO gas	Xe-136	tbd	gas TPC	SNOlab		
MOON	Mo-100	tbd	tracking	Oto		

CUORICINO Bolometers

TeO₂ Bolometer: Source = Detector

Te natural: 34% of ¹³⁰**Te**

Heat sink: Cu structure (8 mK) Thermal coupling: Teflon (G = 4 pW/mK) Thermometer: NTD Ge-thermistor (dR/dT \cong 100 k Ω/μ K) Absorber: TeO₂ crystal (C \cong 2 nJ/K \cong 1 MeV / 0.1 mK)

CUORICINO detector

Gran Sasso Underground Laboratory (Italy), 3500 m.w.e.

Total detector mass: 40.7 kg \Rightarrow **11.64 kg** ¹³⁰**Te** Shielding:

11 modules, 4 detector each, crystal dimension: 5x5x5 cm³ crystal mass: 790 g 44 x 0.79 = 34.76 kg of TeO,

2 modules x 9 crystals each crystal dimension: 3x3x6 cm³ crystal mass: 330 g 9 x 2 x 0.33 = 5.94 kg of TeO₂ (2 enriched in 128Te @82.3%) (2 enriched in ¹³⁰Te @75%)

- Cu box + Roman Pb inside cryostat
- 20 cm Pb & 10 cm borated polyethylene outside

CUORICINO results

Total exposure: 18 kg.y of ¹³⁰Te Bkg: 0.18 cts/(keV.kg.y) FWHM at 2615 keV: ~ 8 keV

$$T_{1/2}(\beta\beta0\nu) \ge 3.10^{24} \text{ y} (90\% \text{ C.L.})$$

Origin of Background: ²³⁸U or ²³²Th contamination on the surface of crystal and Cu structure facing the detectors

CUORE experiment

Assembling **19 towers** similar as CUORICINO \Rightarrow Total = **988 crystals** Te natural \rightarrow 741 kg ^{nat}TeO₂ = \sim **200 kg ¹³⁰Te**

CUORE bkg prediction

First test results (Hall C) on cleaning crystals and copper surfaces:
 reduction of crystal surface contamination of a factor ~5
 reduction of continuum background in 3-4 MeV region of a factor ~2

Measured contaminations projected (Montecarlo) on CUORE

SOURCE	BACKGROUND @ 2.5 MeV (10 ⁻³ counts/keV/kg/y)
TeO ₂ crystal bulk	< ~1.3
TeO ₂ crystal surface	< ~7
Detector mounting bulk	< ~1
Detector mounting surface	< ~25
Experimental set-up gamma	~ 2
Environmental gamma	~ 0.002
Environmental neutrons	< ~0.1
Environmental muons (no veto)	~ 0.4

target background: < 0.01 c/kg/kev/y

presently projected bkg: < 0.04 c/kg/kev/y

... STILL WORKING TO IMPROVE THESE NUMBERS!

→ special efforts devoted to crystal production and copper surface cleaning

CUORE-0: the first CUORE tower

CUORE-0: first tower under assembly, will be installed in CUORICINO cryostat in 2009/2010

- will demonstrate the assembly procedure improved during R&D years (gluing, holder, NTD...)
- will demonstrate the bkg reduction obtained from R&D

Mostly: improvement of Cu surface cleaning

- 52 crystals (750 g each) already arrived and sefely stored in LNGS
- Bolometric test is presently starting in CUORICINO experimental facility

⇒ Target: 0.01 cts/keV/kg/y

Full CUORE detector: commissioning is forseen in 2012:

- 1000 crystals funded by INFN and DoE
- CUORE Hut has been installed in LNGS
- Cryostat assembly under progress

Scintillating bolometers

Above 2.6 MeV, BKG dominated by α from surface contamination !

Furthermore a not negligible part of the background can arise from high energy neutrons from μ -spallation

Scintillating bolometers

S. Pirro et al. Physics of Atomic Nuclei, 69, 2109–2116 (2006)

Background measurement with CdWO4 crystal

Ultimate bkg: - U/Th contamination on the surface of the crystal (and α escapes the crystal)

- Th contamination in the mechanical frames: pile-up of the 2 γ 's (2615 + 583 keV)
- Neutrons (from μ -spallation)

Using CUORICINO/CUORE measured contaminations (crystal and Copper surface), the expected bkg, calculated with GEANT4 is: $bkg \sim 10^{-4} cts/(keV.kg.y)$!!!

ZnSe (82Se) an extremely interesting crystal

Several experimental tests have shown that α events with lower amount of scintillation light are due to residual lapping powder (AlO₂ non scintillating) on the surface of the crystal

Scintillating Bolometers: a very promising technique !

Positive results have been also obtained with:

> ¹⁰⁰Mo: **ZnMoO**₄, PbMoO₄, CaMoO₄, SrMoO₄

> ⁴⁸Ca: CaF₂, CaMoO₄

> ⁸²Se: ZnSe (scint. quenching for α is < 1 \Rightarrow sensitive to surface quality)

But NO scintillation light with $TeO_2...$

Very promizing technique:

- High bkg rejection efficiency
- > High $\beta\beta0\nu$ efficiency
- ➤ Can study several isotopes: ¹¹⁶Cd, ⁸²Se, ¹⁰⁰Mo and ⁴⁸Ca
- Compact detector

Expected sensitivity with	Cryst
CUORICINO -like	
experiment	CdW
Assuming:	
• 5 years data	ZnMo

• 5 years data

• bkg = 10^{-3} cts/keV/kg

• FWHM=10 keV

Crystal	Isotope	M _{tot} (kg)	$M_{\beta\beta}(kg)$	Bkg	$T_{1/2}(\beta\beta0 u)$
		Crystals		cts/FWHM/y	90% C.L.
CdWO ₄	¹¹⁶ Cd	51.1	14.8	0.5	0.6 10 ²⁶
ZnMoO ₄	¹⁰⁰ Mo	27.2	11.8	0.3	0.6 10 ²⁶
ZnSe	⁸² Se	34.0	19.0	0.3	10 ²⁶
CUORICINO	¹³⁰ Te	38.8	10.48	56	0.06 10 ²⁴

• Larger scale test with enriched isotope must be performed

Overview of experiments

	Name	Nucleus	Mass*	Method	Location	Time line	
	Operational & recently completed experiments						
	CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008	
	NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010	
			Construction	funding			
	CUORE	Te-130	200 kg	bolometric	LNGS	2012	
	EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)	
	GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)	
	SNO+	Nd-150	56 kg	scintillation	SNOlab	2011	
	Substantial R&D funding / prototyping						
	CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009	
	Majorana	Ge-76	26 kg	ionization	SUSL	2012	
	NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013	
	SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)	
	R&D and/or conceptual design						
	CARVEL	Ca-48	tbd	scintillation	Solotvina		
	COBRA	Cd-116, Te-130	tbd	ionization	LNGS		
	DCBA	Nd-150	tbd	drift chamber	Kamioka		
	EXO gas	Xe-136	tbd	gas TPC	SNOlab		
	MOON	Mo-100	tbd	tracking	Oto		

NEMO: a tracko-calo detector

- \succ Source in form of thin foil, separated to the detector
- > Detector combines :
 - a tracking detector to reconstruct the two e⁻ tracks
 - a calorimeter to measure the energy
- \Rightarrow A complementary technique which allows to identify directly the two emitted electrons

The NEMO-3 detector Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

The NEMO-3 detector Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm Wood (top and bottom) (since march 2004: water + boron)

The NEMO-3 detector Modane Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron)

Radon-free air around the detector

- Phase I (Feb 2003 oct. 2004): High Radon
- Phase II (Dec 2004 today): Low Radon (Radon cont. reduced by factor 6)

ββ decay isotopes in NEMO-3 detector

$\beta\beta$ event in NEMO3

Typical $\beta\beta2\nu$ event observed from ¹⁰⁰Mo

NEMO-3 Backgrounds Measurement NIM A606 (2009) 449-465)

Solution \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Main bkg for ββ2ν but negligeable for ββ0ν

 $(^{100}Mo \text{ and } ^{82}Se \ Q_{\beta\beta} \sim 3 \ MeV > E\gamma(^{208}Tl) \sim 2.6 \ MeV \)$

γ

Compton + Möller

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

beta + Compton

source

foil

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Each bkg is measured using the NEMO-3 data

Measurement of the Radon inside the tracking detector

Monitoring of the Radon bkg every day

➢ Phase 1: Feb. 2003 → Sept. 2004 Radon Contamination

▶ Phase 2: Dec. $2004 \rightarrow \text{Today}$ A (Radon) $\approx 5 \text{ mBq/m}^3$

Measurement of the 208 Tl (232 Th) inside the $\beta\beta$ source foil

²⁰⁸ Tl contamination inside the $\beta\beta$ source
foils is measured using internal (e^{-},γ,γ) or
(e ⁻ ,γ,γ,γ) channels

Agreement with	HPGe measurements
----------------	--------------------------

208 Tl contamination in the Mo foils: A(208 Tl) ~ 100 $\mu Bq/kg$

 \Rightarrow ¹⁰⁰Mo foils should be measured later inside the BiPo detector

ββ material	Ν	A (mBq/kg)	A _{HPGe} (mBq/kg)
¹⁰⁰ Mo(m)	666	0.11 ± 0.01	< 0.13; < 0.1; < 0.12*
¹⁰⁰ Mo(c)	1628	0.12 ± 0.01	< 0.17
⁸² Se(I)	446	0.34 ± 0.05	< 0.670
⁸² Se(II)	507	0.44 ± 0.04	$0.4 \pm 0.13^{**}$
⁴⁸ Ca	42	1.15 ± 0.22	<2.
⁹⁶ Zr	158	2.77 ± 0.25	<10.;<5.*
¹⁵⁰ Nd	1002	9.32 ± 0.32	$10. \pm 1.7$
¹³⁰ Te	448	0.23 ± 0.05	< 0.5
^{nat} Te	495	0.27 ± 0.04	< 0.08
¹¹⁶ Cd	196	0.17 ± 0.05	< 0.83; < 0.5*
Cu	66	0.03 ± 0.01	< 0.033

ββ0v results with ¹⁰⁰Mo

 $T_{obs} = 3.85$ years M(¹⁰⁰Mo) = 6.914 kg

Data until the end of 2008

Both simple counting and likelihood methods are consistent

T_{1/2} (0vββ) > 1.1 x 10²⁴ y @ 90% C.L. <m_v> < 0.45 – 0.93 eV

ββ0v results with ⁸²Se

 $T_{obs} = 3.85$ years $M(^{82}Se) = 932$ g

Data until the end of 2008

 $T_{1/2} \, (0 \nu \beta \beta) > 3.6 \ x \ 10^{23} \ y @ 90\% \ C.L.
 <math display="inline">< m_v > < 0.89 - 1.61 \ eV$

SuperNEMO Project

Extrapolation of NEMO-3 detector \Rightarrow 100 kg of ⁸²Se

 \Rightarrow to reach $T_{1/2}(\beta\beta0\nu) \ge 10^{26}y$

To be installed in the futur extension of Modane Undergound Lab.

Three main R&D challenges for SuperNEMO

In order to reach $T_{1/2}(\beta\beta0\nu) \ge 10^{26}$ y with 100 kg of ⁸²Se, the R&D targets are:

• Reduce $\beta\beta 2\nu$ background - $T_{1/2}(\beta\beta 2\nu) = 10^{20}$ y for ⁸²Se - Energy resolution Calorimeter FWHM = 7% @ 1 MeV ------ 14% @ 1 MeV

• Reduce ²⁰⁸Tl and ²¹⁴Bi contamination inside $\beta\beta$ source foils $A(^{208}Tl) < 2 \mu Bq/kg$ $A(^{214}Bi) < 10 \mu Bq/kg$

• Reduce Radon and Thoron contamination inside the detector $A(Radon) < 0.1 \text{ mBq/m}^3$ $A=5 \text{ mBq/m}^3$ $A(Thoron) < 15 \mu Bq/m^3$ $A=150 \mu Bq/m^3$

Energy Resolution

- PMT 8" Photonis QE = 45% with dedicated dynodes
- Plastic Scintillator: PVT EJ200 (~ BC408)
- Hexagonal design
- Wrapped with ESR teflon and aluminized mylar on the entrance face

Measured with ⁹⁰Sr spectrometer at CENBG Crosscheck with ²⁰⁷Bi at UCL London

$$\Rightarrow$$
 FWHM @ 1 MeV = 7.1 %

BiPo detector

Measure the purity in ²⁰⁸Tl and ²¹⁴Bi of the SuperNEMO $\beta\beta$ source foils

Goal: To measure ~10 m² of foils (40 mg/cm²) in ~ 1 month with a sensitivity of:

 $^{208}Tl < 2~\mu Bq/kg~$ and $^{214}Bi < 10~\mu Bq/kg$

Sandwich of two low radioactive thin polystyrene plastic scintillators **Time topology signature:** 1 hit + 1 delay hit (and no coincidence)

From the BiPo-1 prototype to the BiPo-3 detector

BiPo-1 prototype of 0.8 m²

• Prototype of 0.8 m² running in LSM Modane

(20 modules of $20 \times 20 \times 0.3 \text{ cm}^2$ scintillators)

• Goal: Measurement of the backround level

(surface radiopurity of the scintillators)

• **Results:** 32 BiPo events detected after 420 days of data collection

Bkg level $A(^{208}Tl) = 1.5 \ \mu Bq/m^2$

- Goal: To measure 3.5 m² of ⁸²Se ββ source foils (thickness=40 mg/cm²)
- Assuming a background $A(^{208}Tl) = 1 \ \mu Bq/m^2$ (as in BiPo-1), one can achieve a sensitivity of

 $A(^{208}Tl) < 3 \mu Bq/kg (90\% C.L.)$ after 6 months of measurement

SuperNEMO demonstrator

- First SuperNEMO module in Modane
- > 7 kg of ⁸²Se
- Expected sensitivity :

 $T_{1/2}(\beta\beta0\nu) > 4.10^{24} \text{ years per year of data collection}$ Bkg ~ 0.1 cts/FWHM/year at Q_{ββ}

- Goal : demonstrate the control of the background Foil purity: A(²⁰⁸Tl) < 2µBq/kg & A(²¹⁴Bi) < 14µBq/kg Gas purity inside the detector: A(Radon)<0.1 mBq/m³ & A(Thoron)<15µBq/m³
- Installation expected in 2013 in Modane

Name	Nucleus	Mass*	Method	Location	Time line			
Operational & recently completed experiments								
CUORICINO Te-130 11 kg bolometric LNGS 2003								
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010			
		Construction	funding					
CUORE	Te-130	200 kg	bolometric	LNGS	2012			
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)			
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)			
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011			
	Substa	ntial R&D fund	ling / prototyping					
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009			
Majorana	Ge-76	26 kg	ionization	SUSL	2012			
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013			
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)			
	R&	D and/or conc	eptual design					
CARVEL	Ca-48	tbd	scintillation	Solotvina				
COBRA	Cd-116, Te-130	tbd	ionization	LNGS				
DCBA	Nd-150	tbd	drift chamber	Kamioka				
EXO gas	Xe-136	tbd	gas TPC	SNOlab				
MOON	Mo-100	tbd	tracking	Oto				

SNO+

 Uses existing SNO detector Heavy water replaced by liquid scintillator (1 kton) loaded with ¹⁵⁰Nd
 1% natural Nd-loaded liquid scintillator in SNO
 = 56 kg of ¹⁵⁰Nd (before fiducial cut)

> Modest resolution (compensated by high statistical accuracy ?)

Liquid scintillator: Linear Alkylbenzene (LAB)

- Compatible with acrylic, undiluted
- High light yield, long attenuation length
- Safe: high flash point, low toxicity
- Cheaper than other scintillators

Requires engineering for acrylic vessel hold down and purification plant.

 \Rightarrow Technologies already developed.

Start filling with scintillator in early 2011

(Sudbury, Canada)

^{Nat}Nd-loaded Liq. Scint.

Expected Sensitivity: $T_{1/2}(\beta\beta0\nu) \sim 5.10^{24}$ yr after 1 year of data Large uncertainty on Nuclear Matrix elements However largest phase space factor (= 32 times more favorable than ⁷⁶Ge !)

Name	Nucleus	Mass*	Method	Location	Time line		
Operational & recently completed experiments							
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008		
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010		
Construction funding							
CUORE	Te-130	200 kg	bolometric LNGS 20		2012		
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)		
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)		
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011		
Substantial R&D funding / prototyping							
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009		
Majorana	Ge-76	26 kg	ionization	SUSL	2012		
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013		
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)		
R&D and/or conceptual design							
CARVEL	Ca-48	tbd	scintillation	Solotvina			
COBRA	Cd-116, Te-130	tbd	ionization	LNGS			
DCBA	Nd-150	tbd	drift chamber	Kamioka			
EXO gas	Xe-136	tbd	gas TPC	SNOlab			
MOON	Mo-100	tbd	tracking	Oto			

CANDLE-III

(Kamioka, Japan)

96 crystals ^{nat}CaF2 (10³ cm³) : Total Mass = 305 kg \Rightarrow only ~ 350 g of ⁴⁸Ca (natural abundance = 0.187%)

Current R&D: enrichment using chromatography and Ca-doped Crown Ether
 Korean group also started an R&D program to enrich ⁴⁸Ca by laser separation ⇒ In 2012: Demonstrator for ⁴⁸Ca enrichment 1 kg/year...
 If enriched ⁴⁸Ca becomes available in the future, CANDLE would become a competitive experiment

CANDLE-III

(Kamioka, Japan)

....will illuminate Kamioka

First PMT was installed at 24 June, 2009.

305 kg (96 x 10^3 cm³ crystals) of natural-CaF₂ \Rightarrow 350 g of Ca-48

S. Schönert, TAUP 2009

Overview of Experiments

Name	Nucleus	Mass*	Method	Location	Time line			
Operational & recently completed experiments								
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008			
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010			
Construction funding								
CUORE	Te-130	200 kg	bolometric	LNGS	2012			
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)			
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)			
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011			
Substantial R&D funding / prototyping								
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009			
Majorana	Ge-76	26 kg	ionization	SUSL	2012			
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013			
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)			
R&D and/or conceptual design								
CARVEL	Ca-48	tbd	scintillation	Solotvina				
COBRA	Cd-116, Te-130	tbd	ionization	LNGS				
DCBA	Nd-150	tbd	drift chamber	Kamioka				
EXO gas	Xe-136	tbd	gas TPC	SNOlab				
MOON	Mo-100	tbd	tracking	Oto				

EXO-200

- → A liquid ¹³⁶Xe TPC \Rightarrow compact detector: L ~ 35 cm, Φ ~ 40 cm
- > 200 kg 80% enriched ¹³⁶Xe already produced

≥
$$Q_{\beta\beta}$$
=2479 keV

- > $\beta\beta2\nu$ has not yet been observed $T_{1/2}(\beta\beta2\nu)$
- >It combine ionization charge & Scintillation light readout
 - \Rightarrow FWHM = 3.4% @ Q_{\beta\beta} = 2479 keV

Eff.	Run Time	Background Cts/FWHM	T _{1/2} (ββ0ν) (90% C.L.)	<m<sub>v> (NME N4-ILIAS)</m<sub>
70%	2 yr	40	6.4 10 ²⁵ yr	0.11 – 0.26 eV

EXO-200

EXO-200 goes underground...

...and commissioning will start end of 2009

(WIPP, USA)

NEXT-100

(Canfranc, Spain)

- ➤ A High Pressure Gaseous ¹³⁶Xe TPC (HPG-TPC) with 100 kg of ¹³⁶Xe
- > Pressure ~ 10 bars (e⁻ with energy ~ $Q_{\beta\beta}$ traverses ~ 30 cm of gas) Size of the NEXT-100 TPC: L ~140 cm, F ~ 140 cm
- > Reconstruct the topology of $\beta\beta$ events: a track that ends in two "blobs" of energy
- Electroluminescence (EL) TPC for a better energy resolution

Target: FWHM ~ 1% @ $Q_{\beta\beta} = 2479 \text{ keV}$ (already achieved at lower energy with small EL TPC)

> Advantage: Gas Xe potential of providing event topology + very good energy resolution

SUMMARY - Overwiev of $\beta\beta$ experiments

Project	Isotope	Mass (in kg)	FWHM @ Q _{ββ}	Bkg Cts/ (keV.kg.y)	Bkg Cts/ (FWHM.y)	$T_{1/2}(ββ0ν)$ limit	<m<sub>v> (in meV)</m<sub>	Time line Start - results
	Construction / Commissioning							
GERDA I		18		10-2	0.7	3.10 ²⁵	200 - 500	2010-2011
GERDA II	⁷⁶ Ge	40	4 keV	10-3	0.2	2.10 ²⁶	80 - 200	2011-2013
GERDA III		100		10-3	0.4	2.1027	25 - 65	?
CUORE	¹³⁰ Te	200	5 keV	10-2	37	2.10 ²⁶	40 - 85	2012-2017
EXO-200	¹³⁶ Xe	200	40 keV	2.5 10-3	20	6.10 ²⁵	110 - 260	2010-2012
SNO+	¹⁵⁰ Nd	56	~200keV	-	~ 80	-	~ 100	2011-2013
Substantial R&D funding / prototyping								
CANDLE 3	⁴⁸ Ca	0.35	210 keV	-	-	-	-	2010 - ?
SuperNEMO	⁸² Se	100	210 keV	10-4	~ 2	10 ²⁶	60 - 140	2013-2020
NEXT-100	¹³⁶ Xe	100	25 keV			6.10 ²⁵	110 - 260	2014-2019
R&D								
Scintillating	⁸² Se	19				10 ²⁶	60 - 140	
Bolometers	¹¹⁶ Cd	15	10 keV	$\leq 10^{-3}$	≤ 0.3	6.10 ²⁵	75 – 165	?
1 tower	¹⁰⁰ Mo	12				6.10 ²⁵	65 - 130	