Can LHC falsify Leptogenesis ?
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Roadmap to generating the observed matter-antimatter (baryon) excess

Generate B or L asymmetry at high scale

Electroweak phase transition occurs

At (or near) Equilibrium

Out of Equilibrium

|ndependently of pre-existing
BorlL

anew creation of B is
possible, (with B-L=0 for the
new contribution)

Pre-existing B or L erased attacked
by sphalerons/ topological solutions
but B-L is conserved

Electroweak
Baryogenesis 7?

Need many additionsto SM,
Very difficult to establish or

to get arealiable estimate

i n«.:iul'n.
| Interactions

For SU(5) baryo, B-L=0, so
B and L totally erased.—> NO effect!

|F B-L =0, the proportions of
B and L are ssmply changed,;
In particular, if only L was generated,

it can be changed into B

> Leptogenesis
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L eptogenesis

e Basic idea .generate L at higher temperature

» Use the electroweak phase transition near equilibrium to
convert

sAdvantage: insensitive to the details of the sphaleron-based mechanism,
provided the transition stays close to equilibrium until completion

» Use heavy Majorana neutrinos,

e... because their inclusion
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How leptogenesis works....

Assume that we have some population of heavy N particles...
(either initial thermal population, or re-created after inflation) ; dueto their
heavy mass and relatively small coupling, N become easily relic particles.

Generation of lepton number

L Al
— ¥
L

o .

;
- |

N can decay to Lepton L 4+ qu as above, or to
the opposite channel L¢ CN\

CP violation +
| nterference term leads

v . L |toexcessof L or anti-L
= - Possible Unitarity
RN 0) L =-1 cuts
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Constraints:;

Heavy neutrinos must decay out of equilibrium

T(X) >> g1
H =a/a is the Hubble constant,

7= r%gQM

H= \/7 019G6V

g* is the number of degrees of freedom at the
time

at decay : T'~ M ,

Need enough CP violation;
for large splitting between neutrino masses, get

3 l M,

0
YT T ler [AA] ZI‘“(P“’?‘ 1) M,

- Ecole Polytechnique, jmfrere 5
|W%m Paris, 12 octobre 2009



Some rough estimations....

...What are the suitable values of A and M?
Assume there is only one generic value of A (in reality, a matrix)

e <A /A%2~ A2 >10"8
2 0 e N2 NS
my =m* /M ~ A\ /M ~ .01leV

rough estimate of M scale
(in GeV) needed...

At the difference of
baryogenesis, the Y ukawa

matrix A leaves alot of
freedom

N light decay | enough
neutrino [ outof | CpP
01ev |equil. viol
M~ M>

.00001 | 10n7 1078 need

tuning

.0001 | 1079 10"M10

.001 1001 | 1072

01 10M3 | 10M14

A 1005 | 10016

1 1007 | 10018
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Could much lower values be reached?

Possible tuning: resonant leptogenesis

L il
-
i\'Tl _\ |
e Tw.
T _r,)-i' L

If the 2 neutrinos are nearly degenerate,
Pole amplification: CP interference becomes

of order 1 instead of A2
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Thisfar, the introduction of (heavy) right-handed neutrinos
IS quite arbitrary:f or light neutrino masses, it amounts to
Introducing alarge M instead of avery small Y ukawa.

It only makes sense if the new, heavy neutrinos are involved in
some unification scheme.
This could be SO(10), E(6), or other groups,
(even badly broken)
Wy and Z' bosons linked to e, and N exist;

Contributions to N mass also contribute to Wx,
and these should not be neglected. SU(5) ¢ SO(10)

and the fermions come in nice representations
16=501041

where " 1" is precisely Ng
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with the gauge inclusion
0 ‘ \ed &
€] CS\*\\) 78]
| s
I+ Ymme\{\g
M Wge = M N,

€1 =
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In rough terms ...

Dilution factor X ?

M2
_ " Wpg
Qw = 73p2

® My, <M = 2-body decay

[

— X Large ~ 10" — 10° e
—  too much dilution

® \y,>M = 3-body decay
Loy =8¢ 1

’ 2772 myMyaZ \/
= Ay ~ 10 = X ~ 10

2

In fact, the presence of WR will prove beneficial in some cases
(re-heating after inflation )
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Final Baryon asymmetry:

fi fi VAR
YBI]. i ﬁll?‘}:—.*B —_— Y;..q-tcfp .]? .Er—l'

Conversion to
Baryon nb through
Sphalerons
Approx . -28/79

Initial heavy neutrino population Efficiency,
Suppression by scattering,
including dilution

by R sector

CP asymmetry
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TESTING LEPTOGENESIS

Type I Leptogenesis Testability:

1. If Nir are hierarchical Then successful Leptogenesis requires
m(Ng) > 108 GeV

2. If Nir are degenerate Then Leptogenesis possible at low
scales, but m(va) require suppressed Yukawa couplings
3. » Casas-Ibarra parameterization of Yukawa [NPB 618(2001)171]
A =mn R/m, Ut

CP violation at low energies governed by U X
CP violation at high energies governed by AA" = f(U) !

= 7 direct link between CP violation at high & low energies
[ Branco et al. 2001, Pascoli et al. 2006, Davidson et al. 2007, ... ]

=

If not testable, could leptogenesis at least be falsified ?

CAN LHC pisPrROVE LEPTOGENESIS ?
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EFFECTS OF A LOW SCALE Wgr

Diagrams CP Violation Efticiency

- . _Tvorn— Ty ipe
Yukawa e - r® n<l1
¥} o 2N L]
H s, “Each N decay could gives AL=1"
r-r ‘ : iﬂ l\
. D Ecp = ! o Dilution !
= A Wa | P+ — &
Lyt P T — i ;
. Ne g . _ =1 Lot A T f FH: )
= ] ] [
o e+ o |

Diagrams

Ngp ER Np &n uR Ng eR
Wg Wga Wr

dp uR TR = e dp Ng i

= Easier to produce neutrinos @ Reheating ¥

[ strong ¥ hermalization
: : = Harder decoupling @ Low T° (Washout) X
Due to the relatively high abundance of targets
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Right-handed W
Can have both enhancing
And damping effects

Allowed contours in M7 — mq plane,

solid line = thermal Majorana initial population

dashed line = Majorana population rebuilt af-

ter reheating

2 effects :

» more dilution leading to heavier MR,

e suppression in re-heating scheme lifted .

N Cosme JHEP 0408:027,2004.

hep-ph/0403209
:-.n::tanl

o4
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= T
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SM ~ a,, = 10°
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log,, [, (eV)]
2
o MWR
W = "2
Mz
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A few usefull references... among many :

initial work :

85-86 Kuzmin, Rubakov, Shaposhnivov L--B transition
Fukugita, Y anagida

96 Covi, Roulet,Vissani

Very strong constraints
claimed...

around 2000 : revival by Buchmuller,Pltimacher,
... large number of papers...

detailed study and review:
Giudice, Notari, Raidal, Riotto , Strumia hep/ph0310123

critical discussion on limits on masses and couplings
Hambye, Lin, Notari, Papucci, Strumia hep/ph0312203

..many papers on aternate mechanisms...

also : influence of lepton flavours, N2 and N3:

Abada, Davidson, Josse-Michaux, Losada, Riotto hep/ph 0601083

Nardi, Nir, Roulet, Racker hep/ph 0601084
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10° 10 10 107 10 10 10
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Figure 4: Tnverted hierarchy case. Curves, in the (fi-Mj)-plane, of constant pii* = 10710
(thin lines) and #E§* = 3.6 x 1010 (thick lines) for the indicated values of 7. The filled

regions for pi§i* = 3.6 x 10~
m = 0.20eV.
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are the allowed regions from CMB. There is no allowed region for
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10"

10155
10'4?

10°F

M,/GeV

101?:_
10"
1013

10° F

10° L

on thisside, too large A
leads to excessive wash-
out

for instance, this side of the constraint assumes
zero initial N after reheating, and requires large
A to re-generate them

thisis very model-depdt!
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CAN LHC DISPROVE
LEPTOGENESIS ?

J.M.FRI::RE_, T.HAMBYE & G.VERTONGEN
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EXAMPLE OF GAUGE EFFECTS

m{N) = 500 GeV m(wr) = 3 TeV ml = 103 eV

| case | Content

? (a) |standard Leptogenesis

A

- 3 i | = — = e

- | I | = —
lugm [IHN;"T] P&}

(b
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NOW
|1‘.‘ng" [y /T —_
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EXAMPLE OF GAUGE EFFECTS

m{N) = 500 GeV m(wr) = 3 TeV ml = 103 eV

| case | Content

? (a) |standard Leptogenesis

? fbj ?Eéj+ﬁ% &écays %H_Yh = _ | |
; () ;(b5¥mm scatterings in Ya |2.10-10(2.10-13]

A

| (d) |(c)+W: decays in Y,
| | (d)+Ws scatterings in Y

N
L
-
-
14
Z
O
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O
8
x
L
-
Z

L

NOW
log,, [1my/T] e
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EFFICIENCY RESULTS

nforzy =z
- .l_ze*.+._+_.,_,_ﬁ_1._?__j M(Wg)= 3 TEV

IN ANY CASE :
N < Nun =7.10%8

Type I Leptogenesis

SIS Disproved if Wr
" log,g iy [ineV] Discovered @ LHC

Il
P I T T IR T SN TN TR S S S N S SR T
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BOUNDS ON M(Wgr) & M(NRg)

FOR Ecp = &pr
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Prospects at LHC.. Us O > Wg > NI+ M+ U dg

This analysis assumes N > M- u, dy
lighter than Wx,; S
should be generalized B 4eg0kNot allowed

(one less mass constraint) (SRR /
or extended to quark : :
sector (correlationsin 2500¢ / — E
top decay) | :

4[]{}[] :I T I T T 1 I LI ;).1 LI L I 1T 1T 1

CMS Phvs 1500¢ ||| :
TDR2 YIS 1000E-— :

E— ,f'l ’,/I ]
(similar plots for soof ) _
Ales 0"2000 3000 4000 5000 6000

M, . GeV

Figure 15.7: CMS5 discovery potential of the Wg boson and right-handed Majorana neutrinos
of the Left-Right S5y mmetric model for the integrated luminosity L, = 30 b (outer contour)
and for L, = 1 fb! {inner contour)
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Spotting a Wi, without using the N
Pick up a paper:

Thksto Fabio Maltoni
Wk identification at hadron colliders

for the Madgraph processsing

J.-M. Frére »>! and W.W. Repko ®

* Physique Théorique, CP225, Université Libre de Bruxelles, B-1050 Brussels, Belgium ?
b Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Received 5 November 1990 1990'

We study the process pp (pp) —+Wyu—bt—bbW, , where Wy, is a hypothetical heavy gauge boson. The differential cross section

do/dEy, is sensitive to the chiral structure of the Wy, coupling. In particular, the heavy Wy expected from SU(2), XSU(2)g X U(1)
models is clearly distinguishable from an additional W{.

b
and a Ph.D. student* |
WrR’
t W
d b

!

“thanks to R. Frederix

%

Ecole Polytechnique, jmfrére 23
Paris, 12 octobr e 2009



| .Validation

ud + Wg" » tb > BbW* Vs = 1 Tev
) | ) | M |

m, = 180 GeV

2x107*

do/dEy (pb/GeV)

1074

200 300

Ev (GeV) [Frere & Repko, 1991]
Fig. 1. The W energy distribution from t quark decay is shown
for t production by the exchange of a heavy W, (LL) and by the
exchange of a heavy W (RL). The heavy W mass was taken to
be 800 GeV.
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2. Pheno=Exp study
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Electroweak Baryogenesis 7?

e NOT favoured in Standard M odel :

1% order phase transition (requires light scalar boson)
excluded by LEP

*CP violation insufficient in SM: (see next dide)

*Possiblein some extensions, like SUSY

e.g. add extra scalars (including singlets and trilinear
couplings to force a strong 1st order phase transition

eExtra CP violation needed

*Even in the best case, evaluation of the efficiency of the
conversion mechanism difficult, due to extended solutions.
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L eptogenesisis by far the most attractive way to
generate the current baryon asymmetry,

It isextraordinarily sturdy and resilient, and
almost hopeless to confirm

BUT

finding aWp at a collider near you would kill at
least the « type 1 » leptogenesis (= through
asymmetrical N decay)

probably the only realistic way to EXCLUDE
simple leptogenesis !
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