

HARPO: Measurement of polarised gamma rays (1.7 to 72MeV) with the HARPO TPC

Philippe Gros for the HARPO collaboration

Measurement of polarised gamma rays in the HARPO TPC Philippe Gros, LLR

- Introduction to the HARPO project
- Setup at the NewSUBARU photon beam
- Gas monitoring
- Trigger with micromegas signal
- Other experiences
- Conclusions

Gamma Astrophysics non thermal phenomena

Galactic targets

Pulsar

Supernova Remnants

• Extragalactic targets

Pulsar wind nebulae

Micro-quasars

Galactic center

Active Galactic Nuclei

Galaxy Cluster

Starburst galaxies

Merging Galaxies

Gamma-ray Bursts

• Fundamental physics

Dark Matter annihilation

Universe transparency

- CR physics - Lorentz invariance - Quantum gravity - Axion-photons obsc

TPC: photon conversion

The incoming photon interacts with the gas and decays into an electron-positron pair

TPC: Gas ionisation

The electron and positron travel through the gas (mostly Argon) and ionises it, freeing many electrons and positive ions This takes a few nanoseconds

Polarisation measurement

9/41

HARPO Demonstrator

- Purpose
 - Assess challenges
 - Demonstrate performance in test beam
- Realisation
 - 30cm cubic TPC
 - Ar/iC_4H_{10} 95/5 up to 5bar
 - micromegas+2GEM amplification
 - 2x288 strips readout (x&y), 1mm pitch
 - AFTER readout electronics,
 511 time bins, up to 50MHz (33 used)
 - trigger: 6 scintillators

Going to Japan

Shipping equipment

Departure from LLR

Arrival in NewSUBARU

2014-12-11

Measurement of polarised gamma rays in the HARPO TPC Philippe Gros, LLR

Shipping equipment

Departure from LLR

Arrival in NewSUBARU

2014-12-11

Measurement of polarised gamma rays in the HARPO TPC Philippe Gros, LLR

HARPO Intermède animalier 1

NewSUBARU

地図 法滞状:

NewSUBARU

arotro

日本

Dti

Measurement of pol Philippe Gros, LLR

NewSUBARU photon beam

IR

- Polarised gamma ray beam
 - Inverse Compton
 - electron beam 0.6, 1., 1.2 or 1.5 GeV
 - laser Nd (1ω or 2ω), Er or CO2
 - => polarised photons 1.71 to 72.3MeV
- Pulsed mode
 - Nd: 20kHz, Er:200kHz, CO2: not

Gamma beam

Laser beam

HARPO in beam

Beam campaign

- ~20 days of data taking
- 13 gamma energies, beam polarised or not
- 4 TPC orientation for angle systematics
- >60Mevents, >1TB of data
- probably >20% gamma converted in gas

Intermède animalier 2

HARPO

HARPO gas system

- Sealed vessel
- Leaks minimised in vacuum with He system
- Gas filling procedure
 - vacuum pumping (<10-5bar)
 - "rinsing" with gas mixture ~100mbar
 - vacuum pumping (~10-7bar)
 - 2 bar fill

Gas monitoring

IR

- No direct measurement of the gas
- Monitoring with track data
 - High momentum traversing tracks in Z
 - uniform energy deposition along Z (if corrected for angle)
 - Simple access to gain, drift velocity and absorption
 - Dedicated trigger line => $\sim 2\%$ of the events

Cosmic rays

31/41

2014

IH DT

Gas stability

- Almost no leak (no pressure loss)
- Slight decrease of Vdrift
- Stable gain
- Not much contamination (absorption). Longer analysis (with more statistics) necessary.

Gamma trigger

- Trigger on conversion in the gas volume
 - at least one scintillator (=> timing + trigger) information)

t_o

33/41

- if available, laser trigger signal
- mesh signal >1us (→ 3cm) later

HARPO Trigger performance (?)

Trigger performance

- Further analysis of course needed
- "By eye" it worked well
 - Most events originate on the beam

A puzzling effect

Space charge? Ballistic deficit?

- Observed signal loss at the center of the detector (beam axis)
 - Only at high rate
 - space charge? ballistic deficit? other?
- "Ballistic deficit"
 - shaping 116ns
 - tracks in Z direction => several μ s signals
- Improved by misaligning the detector

HARPO Intermède animalier 3

2014-12-11

Measurement of polarised gamma rays in the HARPO TPC Philippe Gros, LLR

HARPO Conclusion and outlook

- Successful beam campaign with gamma rays
- Good gas stability over more than 20 days
- Good trigger performance
- Most issues related to high rate in beam
- Lots of work necessary for quantitative results...

- Service de mécanique
 - conception, fabrication
- Service électronique
- Service informatique
- Service administratif
 - mission Japon, MoU, ...

Backup

Pressure scan

- One day dedicated to pressure scan
 - "Clean" gas at 1, 1.5, 2, 3 and 4 bar
 - Signal amplitude (dE/dx x gain) ~fixed (Adjusted on the fly)
 - At high pressure, cathode voltage was limited
- Good running condition at all pressures
- Increasing micromegas current spikes at high pressure
 - matching GEM over current => physics?

