
BDSIM User’s Manual v0.4

I. Agapov, S.Malton
revision 0.4, last updated Feb 19, 2008

i

Table of Contents

BDSIM v0.4 User’s Manual. 1

1 About BDSIM . 1

2 Obtaining, Installing and Running 1

3 Lattice description . 2

3.1 Program structure . 3
3.2 Arithmetical expressions . 3
3.3 Physical elements and Entities . 4

3.3.1 Coordinate system . 5
3.3.2 Units . 5
3.3.3 marker . 5
3.3.4 drift . 6
3.3.5 rbend . 6
3.3.6 sbend . 6
3.3.7 quadrupole . 7
3.3.8 sextupole . 7
3.3.9 octupole . 8
3.3.10 multipole . 8
3.3.11 rf . 8
3.3.12 rcol . 9
3.3.13 ecol . 9
3.3.14 solenoid . 9
3.3.15 hkick and vkick . 9
3.3.16 transform3d . 10
3.3.17 element . 10
3.3.18 line . 10
3.3.19 matdef . 11
3.3.20 laser . 13
3.3.21 gas . 13
3.3.22 spec keyword . 13
3.3.23 Element number . 13
3.3.24 Element attributes . 13
3.3.25 Material table . 14

3.4 Run control and output . 14
3.4.1 option. 14
3.4.2 beam . 15
3.4.3 sample and csample . 17
3.4.4 dump . 17
3.4.5 use . 18

ii

4 Visualization . 18

5 Physics . 19

5.1 physicsList option . 19
5.2 Transportation . 19
5.3 Tracking accuracy . 20

6 Output Analysis . 20

7 Implementation Notes . 20

7.1 Architecture . 20
7.2 Features to be added in next releases . 21

Appendix A Geometry description formats . . 21

A.1 gmad format . 21
A.2 mokka . 22

A.2.1 Describing the geometry . 22
A.2.1.1 Common Table Parameters . 23
A.2.1.2 ’Box’ Solid Types . 26
A.2.1.3 ’Trapezoid’ Solid Types . 26
A.2.1.4 ’Cone’ Solid Types . 27
A.2.1.5 ’Torus’ Solid Types . 27
A.2.1.6 ’Polycone’ Solid Types . 28
A.2.1.7 ’Elliptical Cone’ Solid Types . 29

A.2.2 Creating a geometry list . 29
A.2.3 Defining a Mokka element in the gmad file 30

A.3 gdml . 30

Appendix B Field description formats 30

Appendix C Bunch description formats. 30

Appendix D Known Issues 31

8 References . 32

Chapter 2: Obtaining, Installing and Running 1

BDSIM v0.4 User’s Manual

This file is updated automatically from ‘manual.texi’ last updated on Feb 19, 2008.

1 About BDSIM

BDSIM is a Geant4 ([Geant], page 32) extension toolkit for simulation of particle transport
in accelerator beamlines. It provides a collection of classes representing typical accelerator
components, a collection of physics processes for fast tracking, procedures of “on the fly”
geometry construction and interfacing to ROOT analysis ([Root], page 32).

2 Obtaining, Installing and Running

BDSIM can be downloaded from http://ilc.pp.rhul.ac.uk/bdsim.html. This site also
contains some information on planned releases and other issues. Alternatively, a develop-
ment version is accessible under http://cvs.pp.rhul.ac.uk. Download the tarball and
extract the source code. Make sure Geant4 is installed and appropriate environment vari-
ables defined. Then go through the configuration procedure by running the ./configure

script.

./configure

It will create a Makefile from template defined in Makefile.in. You may want to edit
the Makefile manually to meet your needs (if your CLHEP version is greater than 2.x put
-DCLHEP VERSION=9). Then start the compilation by typing

make

If the compilation is successful the bdsim executable should be created in $(BD-
SIM)/bin/$(ARCH) where $(BDSIM) is the directory specified during configuration, and
$(ARCH) is of the form $(OSTYPE)-$(COMPILER), eg Linux-g++. Next, set up the
(DY)LD LIBRARY PATH variable to point to the ./parser directory, and also to the
directory where libbdsim.so is if building shared libraries.

BDSIM is invoked by the command bdsim ‘options’

where the options are

--file=<filename> : specify the lattice file

--output=<fmt> : output format (root|ascii), default ascii

--outfile=<file> : output file name. Will be appended with _N

where N = 0, 1, 2, 3... etc.

--vis_mac=<file> : visualization macro script, default vis.mac

--help : display this message

--verbose : display general parameters before run

--verbose_event : display information for every event

--verbose_step=N : display tracking information after each step

--verbose_event_num : display tracking information for event number N

--batch : batch mode - no graphics

--outline=<file> : print geometry/optics info to <file>

--outline_type=<fmt> : type of outline format

Chapter 3: Lattice description 2

where fmt = optics | survey

--materials : list materials included in bdsim by default

To run bdsim one first has to define the beamline geometry in a file which is then passes
to bdsim via the --file command line option, for example

bdsim --file=line.gmad --output=root --batch

The next section describes how to do it in more detail.

3 Lattice description

The beamline, beam properties and physics processes are specified in the input file written
in the GMAD language which is a variation of MAD-X language ([MAD], page 32) extended
to handle sophisticated geometry and parameters relevant to radiation transport. GMAD is
described in this section. Examples of input files can be found in the BDSIM distribution in
the examples directory. In order to convert a MAD file into a GMAD one, a utility called
mad2gmad.sh is provided in the utils directory.

The following MAD commands are not supported:

• assign

• bmpm

• btrns

• envelope

• optics1

• title

• option

• plot

• print

• return

• survey2

• title

The following MAD commands:

• moni

• monitor

• wire

• prof

are replaced with the marker command.

1 To dump the optical properties of the lattice one can invoke bdsim with the --outline=file.txt --

outline_type=optics options.
2 To compute the coordinates of all machine elements in a global reference system one can invoke bdsim

with the --outline=file.txt --outline_type=survey options

Chapter 3: Lattice description 3

3.1 Program structure

A GMAD program consists of a sequence of element definitions and control commands. For
example, tracking a 1 GeV electron beam through a FODO cell will require a file like this:

mk: marker;

qf: quadrupole, l=0.5*m, k1=0.1*m^-2;

qd: quadrupole, l=0.5*m, k1=-0.1*m^-2;

d: drift, l=0.5*m;

fodo : line=(qf,d,qd,d,mk);

use, period=fodo;

beam, particle="e-",energy=1*GeV;

option, beampipeRadius=5*cm, beampipeThickness=5*mm;

sample, range=mk;

Generally, the user has to define a sequence of elements (with drift, quadrupole, line
etc.), then select the beamline with the use command and specify beam parameters and
other options with beam and option commands. The sample and csample commands
control what sort of information will be recorded during the execution.

The parser is case sensitive. However, for convenience of porting lattice descriptions from
MAD the keywords can be both lower and upper case. The GMAD language is discussed
in more detail in this section.

3.2 Arithmetical expressions

Throughout the program a standard set of arithmetical expressions is available. Every
expression is ended with a semicolon, for example:

x=1;

y=2.5-x;

z=sin(x) + log(y) - 8e5;

Available binary operators are: +, -, *, /, ^

Available unary operators are: +, -

Available boolean operators are: <, >, <=, >=, <>, ==

Available functions3 are:

• sqrt

• cos

• sin

• exp

• log

• tan

• asin

3 see add func(..) in parser/gmad.cc

Chapter 3: Lattice description 4

• acos

• abs

3.3 Physical elements and Entities

GMAD implements almost all the standard MAD elements, but also allows to define ar-
bitrary geometric entities and magnetic field configurations. The geometry description
capabilities are extended by using “drivers” to other geometry description formats, which
makes interfacing and standardisation easier. The syntax of a physical element declaration
is

element_name : element_type, attributes;

for example

qd : quadrupole, l = 0.1*m, k1 = 0.01;

element_type can be of basic type or inherited. Allowed basic types are

• marker

• drift

• rbend

• sbend

• quadrupole

• sextupole

• octupole

• multipole

• vkick

• hkick

• rf

• rcol

• ecol

• solenoid

• laser

• transform3d

• element

All elements except marker, element, ecol, and rcol are by default modeled with an
inner cylindrical beampipe and an outer cylindrical volume. (FOR MAD COMPATIBILITY
sbend SHOULD BE A TORUS). The beampipe outer radius and thickness are defined by
the global beampipeRadius and beampipeThickness options; the beampipe outer radius
can be redefined for almost every element with the aper option. The beampipe material
is defined by the global beampipeMaterial option (default: “Vacuum”), while the residual
gas in the beampipe at the moment cannot be changed by the user and is set to “Vacuum”.
The outer volume is represented (with the exception of the drift element) by a cylinder
with inner radius equal to the beampipe outer radius and with outer radius given by default
by the global boxSize option, which can usually be overridden with the “outR” option.

An already defined element can be used as a new element type. The child element will
have the attributes of the parent.

Chapter 3: Lattice description 5

q:quadrupole, l=1*m, k1=0.1;

qq:q,k1=0.2;

3.3.1 Coordinate system

The usual accelerator coordinate system is assumed (see [MAD], page 32).

3.3.2 Units

In GMAD the SI units are used.

length [m] (metres)
time [s] (seconds)
angle [rad] (radians)
quadrupole coefficient [m−2]
multipole coefficient 2n poles [m−n]
electric voltage [MV] (Megavolts)
electric field strength [MV/m]
particle energy [GeV]
particle mass [GeV/c2]
particle momentum [GeV/c]
beam current [A] (Amperes)
particle charge [e] (elementary charges)
emittances [pi m mrad]
density [g/cm3]
temperature [K] (Kelvin)
pressure [atm] (atmosphere)
mass number [g/mol]

There are some predefined numerical values4 are:

pi 3.14159265358979
GeV 1 m 1
eV 10−9 cm 10−2

KeV 10−6 mm 10−3

MeV 10−3 um 10(
− 6)

TeV 103 nm 10(
− 9)

MV 1 s 1
Tesla 1 ms 10−3

rad 1 us 10−6

mrad 10−3 ns 10−9

clight 2.99792458 ∗ 108

for example, one can write either 100*eV or 0.1*KeV when energy constants are con-
cerned.

4 see add var(..) in parser/gmad.cc

Chapter 3: Lattice description 6

3.3.3 marker

marker has no effect (no volume is associated to it) but allows one to identify a position in
the beam line (say, where a sampler will be placed). It has no attributes.

Example:

m1 : marker;

3.3.4 drift

drift defines a straight drift space. Its volume contains only the vacuum beampipe (no
outer iron cylinder).

Attributes:

• l - length [m] (default 0)

• aper - aperture [m] (default same as beampipeRadius)

Example:

d13 : drift, l=0.5*m;

3.3.5 rbend

rbend defines a rectangular bending magnet. Attributes:

• l - length [m] (default 0)

• angle - bending angle [rad] (default 0)

• B - magnetic field [T]

• aper - aperture [m] (default same as beampipe radius)

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

• THE CODE ALSO ALLOWS FOR A QUADRUPOLE FIELD GRADIENT K1..

when B is set, this defines a magnet with appropriate field strength and angle is not
taken into account. Otherwise, the value of B that corresponds to bending angle angle for
a particle in use (defined by the beam command, with appropriate energy and rest mass) is
calculated and used in the simulations.

Example :

rb1 : rbend, l=0.5*m, angle = 0.01;

3.3.6 sbend

sbend defines a sector bending magnet. Attributes:

• l - length [m] (default 0)

• angle - bending angle [rad] (default 0)

Chapter 3: Lattice description 7

• B - magnetic field [T]

• aper - aperture [m] (default same as beampipe radius)

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

• THE CODE ALSO ALLOWS FOR A QUADRUPOLE GRADIENT K1..

The meaning of B and angle is the same as for rbend.

Example :

sb1 : sbend, l=0.5*m, angle = 0.01;

3.3.7 quadrupole

quadrupole defines a quadrupole. Attributes:

• l - length [m] (default 0)

• k1 - normal quadrupole coefficient k1 = 1/(Bρ) dBy/dx [m−2] Positive k1 means hori-
zontal focusing of positively charged particles (default 0). dBy/dx is the magnetic field
gradient, while (Bρ) is the magnetic “rigidity”: Bρ (T*m) = p(GeV)/(0.299792458 *
|charge(e)|)

• ks1 - skew quadrupole coefficient ks1 = 1/(Bρ) dBy/dx [m−2] where (x,y) is now a co-
ordinate system rotated by 45 degrees around s with respect to the normal one.(default
0).

• tilt - roll angle [rad] about the longitudinal axis, clockwise.

• aper - aperture [m] (default same as beampipe radius)

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

Example :

qf : quadrupole, l=0.5*m , k1 = 0.5 , tilt = 0.01;

3.3.8 sextupole

sextupole defines a sextupole. Attributes:

• l - length [m] (default 0)

• k2 - normal sextupole coefficient k2 = 1/(Bρ) d2By/dx2 [m−3]

• ks2 - skew sextupole coefficient ks2 = 1/(Bρ) d2By/dx2 [m−3] where (x,y) is now a co-
ordinate system rotated by 30 degrees around s with respect to the normal one.(default
0).

• tilt - roll angle [rad] about the longitudinal axis, clockwise.

• aper - aperture [m] (default same as beampipe radius)

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

Chapter 3: Lattice description 8

Example :

sf : sextupole, l=0.5*m , k2 = 0.5 , tilt = 0.01;

3.3.9 octupole

octupole defines an octupole. Attributes:

• l - length [m] (default 0)

• k3 - normal octupole coefficient k3 = 1/(Bρ) d3By/dx3 [m−4] Positive k3 means ho-
risontal focusing of positively charged particles. (default 0)

• ks3 - skew octupole coefficient ks3 = 1/(Bρ) d3By/dx3 [m−4] where (x,y) is now a co-
ordinate system rotated by 30 degrees around s with respect to the normal one.(default
0).

• tilt - roll angle [rad] about the longitudinal axis, clockwise.

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

Example :

of : octupole, l=0.5*m , k3 = 0.5 , tilt = 0.01;

3.3.10 multipole

multipole defines a multipole. Attributes:

• l - length [m] (default 0)

• knl - normal multipole knl[n] = 1/(Bρ) dnBy/dxn [m−(n+1)]

• ksl - skew multipole ksl[n] = 1/(Bρ) dnBy/dxn [m−(n+1)] where (x,y) is now a coor-
dinate system rotated by 30 degrees around s with respect to the normal one.(default
0).

• tilt - roll angle [rad] about the longitudinal axis, clockwise.

• outR - external radius [m] of magnet (default set to aper+22cm)

• material - the magnet material (default set to “Iron”)

Example :

mul : multipole, l=0.5*m , knl={ 0,0,1 } , ksl={ 0,0,0 };

Note that both knl and ksl are required and must contain the same number of param-
eters.

3.3.11 rf

rf defines an rf cavity. Attributes:

• l - length [m] (default 0)

• gradient - field gradient [MV / m]

Chapter 3: Lattice description 9

• material - the cavity material (default set to “Iron”)

Example :

rf1 : rf,l=5*m, gradient = 10 * MV / m;

3.3.12 rcol

rcol defines a rectangular collimator (the aperture is a rectangle, the external profile in
the transverse plane is a square). The longitudinal collimator structure is not taken into
account. To do this the user has to describe the collimator with the generic type element.
Attributes:

• l - length [m] (default 0)

• xsize - horisontal aperture [m] (default set to boxSize)

• ysize - vertical aperture [m] (default set to boxSize)

• outR - external extent [m] in x and y of the collimator (default set to boxSize)

• material - collimator material (default set to “Graphite”)

Example :

col1 : rcol,l=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

3.3.13 ecol

ecol defines an elliptical collimator (the aperture is an ellipse, the external profile in the
transverse plane is a square). Here, again, the longitudinal collimator structure is not taken
into account. Attributes:

• l - length [m] (default 0)

• xsize - horisontal aperture [m] (default set to boxSize)

• ysize - vertical aperture [m] (default set to boxSize)

• outR - limits external extent [m] in x and y of the collimator (default set to boxSize)

• material - collimator material (default set to “Graphite”)

Example :

col2 : ecol,l=0.4*m, xsize=2*mm, ysize=1*mm, material="W"

3.3.14 solenoid

Not yet implemented

3.3.15 hkick and vkick

hkick and vkick are equivalent to a rbend and an rbend rotated by 90 degrees respectively.
However, hkick and vkick do not rotate the frame of reference.

Chapter 3: Lattice description 10

3.3.16 transform3d

An arbitrary 3-dimensional transformation of the coordinate system is done by placing a
transform3d element in the beamline. Attributes:

• x = <x offset>

• y = <y offset>

• z = <z offset>

• phi = <phi Euler angle>

• theta = <theta Euler angle>

• psi = <psi Euler angle>

Example:

rot : transform3d, psi=pi/2

3.3.17 element

All the elements are in principle examples of a general type element which can represent
an arbitrary geometric entity with arbitrary B field maps. Attributes:

• geometry = <geometry_description>

• bmap = <bmap_description>

• outR - limits external extent component box size (default set to tunnelRadius/2)

Descriptions are of the form

format:filename

where filename is the path to the file with the geometry description and format defines
the geometry description format. The possible formats are given in Appendix A [Geometry],
page 21.

Example :

qq : element, geometry ="mokka:qq.sql", bmap ="mokka:qq.bmap";

3.3.18 line

Elements are grouped into sequences by the line command.

line_name : line=(element_1,element_2,...);

where element n can be any element or another line. Lines can also be reversed using
line_name : line=-(line_2), or within another line by line=(line_1,-line_2). Re-
versing a line also reverses all nested lines within.

Example :

A sequence of FODO cells can be defines as

qf: quadrupole, l=0.5, k1=0.1;

qd: quadrupole, l=0.5, k1=-0.1;

Chapter 3: Lattice description 11

d: drift, l=0.5;

fodo : line=(qf,d,qd,d);

section : line=(fodo,fodo,fodo);

beamline : line=(section,section,section);

3.3.19 matdef

To define a material the matdef keyword must be used.

If the material is composed by a single element, it can be defined using the following
syntax:5

<material> : matdef, Z=<int>, A=<double>, density=<double>, T=<double>,

P=<double>, state=<char*>;

Attributes

• Z - atomic number

• A - mass number [g/mol]

• density - density in [g/cm3]

• T - temperature in [K] (default set to 300)

• P - pressure [atm] (default set to 1)

• state - “solid”, “liquid” or “gas” (default set to “solid”)

Example:

iron : matdef, Z=26, A=55.845, density=7.87

If the material is made up by several components, first of all each of them must be
specified with the atom keyword:6

<element> : atom, Z=<int>, A=<double>, symbol=<char*>;

Attributes:

• Z - atomic number

• A - mass number [g/mol]

• symbol - atom symbol

Then the compound material can be specified in two manners:

1) If the number of atoms of each component in material unit is known, the following
syntax can be used:7

5 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials::AddMaterial(name, Z, A, density)
method is called, which in turns (src/BDSMaterials.cc) invokes the Geant4 G4Material constructor:
G4Material(name, Z, A, density);

6 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials::AddElement(name, symbol, Z, A)
method is called, which in turns (src/BDSMaterials.cc) invokes the Geant4 G4Element constructor:
G4Element(name, symbol, Z, A);

7 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials::AddMaterial(name, density, state,
temp, pressure, list<char*> itsComponents, list<G4int> itsComponentsWeights) method is called, which
in turns (src/BDSMaterials.cc) invokes the Geant4 G4Material constructor: G4Material(name, density,
(G4int)itsComponents.size(), state, temp, pressure). Then each component is added with a call to the
G4Material::AddElement(G4string , G4int) method.

Chapter 3: Lattice description 12

<material> : matdef, density=<double>, T=<double>, P=<double>,

state=<char*>, components=<[list<char*>]>,

componentsWeights=<{list<int>}>;

Attributes

• density - density in [g/cm3]

• T - temperature in [K] (default set to 300)

• P - pressure in [atm] (default set to 1)

• state - “solid”, “liquid” or “gas” (default set to “solid”)

• components - list of symbols for material components

• componentsWeights - number of atoms of each component in material unit, in order

Example:

niobium : atom, symbol="Nb", z=41, a=92.906;

titanium : atom, symbol="Ti", z=22, a=47.867;

NbTi : matdef, density=5.6, temperature=4.0, ["Nb","Ti"], {1,1}

2) On the other hand, if the mass fraction of each component is known, the following
syntax can be used:8

<material> : matdef, density=<double>, T=<double>, P=<double>,

state=<char*>, components=<[list<char*>]>,

componentsFractions=<{list<double>}>;

Attributes

• density - density in [g/cm3]

• T - temperature in [K] (default set to 300)

• P - pressure in [atm] (default set to 1)

• state - “solid”, “liquid” or “gas” (default set to “solid”)

• components - list of symbols for material components

• componentsFractions - mass fraction of each component in material unit, in order

Example:

samarium : atom, symbol="Sm", z= 62, a=150.4;

cobalt : atom, symbol="Co", z= 27, a=58.93;

SmCo : matdef, density=8.4, temperature=300.0, ["Sm","Co"],

8 In this case, in src/BDSDetectorConstruction.cc the BDSMaterials::AddMaterial(name, density, state,
temp, pressure, list<char*> itsComponents, list<G4double> itsComponentsFractions) method is called,
which in turns (src/BDSMaterials.cc) invokes the Geant4 G4Material constructor: G4Material(name,
density, (G4int)itsComponents.size(), state, temp, pressure). Then each component is added with a call
to the G4Material::AddElement(G4string , G4double) method.

Chapter 3: Lattice description 13

{0.338,0.662}

The second syntax can be used also to define materials which are composed by other
materials (and not by atoms).

Nb: Square brackets are required for the list of element symbols, curly brackets for the
list of weights or fractions.

3.3.20 laser

laser defines a drift section with a laser beam inside. The laser is considered to be the
intersection of the laser beam with the volume of the drift section. Attributes:

• l - length of the drift section [m]

• x,y,z - components of the laser direction vector

• waveLength - laser wave length [m]

laserWire : laser, l=1*um,x=1,y=0,z=0,waveLength=532*nm

3.3.21 gas

To be implemented in v0.5

3.3.22 spec keyword

This has been removed in v0.4 and no longer has an effect. For setting the outer radius of
a quadrupole, use the outR parameter in the same way as for other elements.

3.3.23 Element number

When several elements with the same name are present in the beamline they can be accessed
by their number in the sequence. In the next example the sampler is put before the second
drift9

bl:line=(d,d,d);

sample,range=d[2];

3.3.24 Element attributes

Element attributes such as length, multipole coefficients etc, can be accessed by putting
square brackets after the element name, e.g.

x=d[l];

9 See Appendix D [Known Issues], page 31

Chapter 3: Lattice description 14

3.3.25 Material table

There is a set of predefined materials for use in elements such as collimators, e.g.

“Air” “LiquidHelium”
“Aluminium” “NbTi”
“BeamGasPlugMat” “Niobium”
“Beryllium” “Silicon”
“CarbonMonoxide” “SmCo”
“CarbonSteel” “Soil”
“Concrete” “Titanium”
“Copper” “TitaniumAlloy”
“Graphite” “Tungsten”
“Invar” “Vacuum”
“Iron” “Vanadium”
“LaserVac” “Water”
“Lead” “WeightIron”
“LeadTungstate”

Currently “Air”, “CarbonMonoxide” and “Vacuum” are gas at T=300K, p=10−12 bar:
both “Air” and “Vacuum” are a N(80):O(20) mixture, “CarbonMonoxide is composed of
CO molecules.

There are also predefined elements (i.e. atoms) that can be used for building composite
materials: "H", "He", "Be", "C" , "N", "O", "Al", "Si", "P" , "S", "Ca", "Ti", “V" ,
"Mn", "Fe", "Co", "Ni", "Cu", "Nb", "Sm", "W" , "Pb".

For more details see the file src/BDSMaterials.cc or run the command bdsim --

materials from the command line.

3.4 Run control and output

The execution control is performed in the GMAD input file through option and sample

commands. How the results are recorded is controlledby the sample command. When the
visualization is turned on, it is also controlled through Geant4 command prompt

3.4.1 option

Most of the options in bdsim are set up by the command

option, <name>=value, ...;

The following options influence the geometry:

beampipeRadius default beampipe outer radius [m]
beampipeThickness default beampipe thickness [m]
beampipeMaterial default beampipe material
tunnelRadius tunnel Radius [m]
boxSize default accelerator component size [m]

The following options influence the tracking:

Chapter 3: Lattice description 15

deltaChord chord finder precision
deltaIntersection boundary intersection precision
chordStepMinimum minimum step size
lengthSafety element overlap safety
minimumEpsilonStep minimum relative error acceptable in stepping
maximumEpsilonStep maximum relative error acceptable in stepping
deltaOneStep set position error acceptable in an integration steps

The following options influence the physics:

physicsList determines the set of physics processes used
thresholdCutCharged charged particle cutoff energy
thresholdCutPhotons photon cutoff energy
stopTracks if set, tracks are terminated after interaction

with material and energy deposit recorded
synchRadOn turn on Synchrotron Radiation process
srTrackPhotons whether to track the SR photons
srLowX sets lowest energy of SR to X*E critical
srLowGamE lowest energy of propagating SR photons
prodCutPhotons standard overall production cuts for photons
prodCutPhotonsP precision production cuts for photons in element

prodCutElectrons standard overall production cuts for electrons
prodCutElectronsP precision production cuts for electrons in element

prodCutPositrons standard overall production cuts for positrons
prodCutPositronsP precision production cuts for positrons in element

The following options influence the generation:

randomSeed seed for the random number generator;
setting to -1 uses the system clock to generate the seed

ngenerate number of primary particles fired when in batch mode

Miscellaneous options:

nperfile number of events recorded per file in ROOT output
nlinesIgnore number of lines to skip when reading bunch files

For a more detailed description of how the option influence the tracking see Chapter 5
[Physics], page 19

3.4.2 beam

The parameters related to the beam are set with the beam command

Chapter 3: Lattice description 16

beam, <name>=value, ...;

There is a set of predefined distribution types that can be generated10. In this case one
needs to specify the following parameters:

• particle - particle name, "e-","e+","gamma","proton", etc

• energy - particle energy

• distrType - type of distribution

and, in addition, other parameters that depend on the distribution type that has been
chosen:

1. Global options:

• X0 - Offset of distribution centre in x[m]

• Y0 - Offset of distribution centre in y[m]

• Z0 - Offset of distribution centre in z[m]

• Xp0 - Angular offset from nominal axis in x-z plane

• Yp0 - Angular offset from nominal z axis in y-z plane

• Zp0 - Directional flag: Zp0 < 0 points the particle back up the beamline

• T0 - Global time offset [s]

2. distrType=”gauss”: a gaussian in x, x’, y, y’, energy and time, with given widths:

• sigmaX - RMS of x distribution in [m]

• sigmaXp - RMS of x’ distribution in [rad]

• sigmaY - RMS of y’ distribution in [m]

• sigmaYp - RMS of y’ distribution in [rad]

• sigmaE - RMS of energy distribution divided by nominal beam kinetic energy

• sigmaT - RMS of time distribution in [s]

3. distrType=”eshell”: a thin elliptic shell in x,x’ and y,y’ with given semiaxes:

• x

• xp

• y

• yp

• sigmaE

4. distrType=“ring”: in the x, y plane the particles are uniformly distributed in r and
in φ inside a ring with inner radius Rmin and outer radius Rmax. x’, y’ and time are
exactly Xp0,Yp0 and T0 respectively for each generated particle. The kinetic energy
distribution is a gaussian of width sigmaE centered about the nominal beam kinetic
energy.

• Rmin, Rmax - inner and outer radius in [m]

• sigmaE - RMS energy spread [GeV]

Example:

10 see src/BDSBunch.cc for more details

Chapter 3: Lattice description 17

beam, particle="e+", energy=100*MeV, distrType="gauss", sigmaX=0.01,

sigmaXp=0.1, sigmaY=0.01, sigmaYp=0.1;

In alternative, one can pass to the simulation a file containing a list of particles to be
generated. For more details see Appendix C [Bunch description formats], page 30.

3.4.3 sample and csample

To record the tracking results one uses the sample and csample commands. To insert a
sampling plane before <element> the following command should be used:

sample, range=<element>;

Example:

sample, range=d;

To put a cylindrical sampler of length l0 (in [m]) around element <element> at distance
r0 (in [m]) the following command should be used:

csample, range=<element>, r=r0, l=l0;

Samplers output the following parameters at the specified location:

E Energy[GeV] E0 Energy at last scatter[Gev]
X Global X position s path length
Y Global Y position t time of flight
Z Global Z position t0 time of flight at last scatter
Xp Global angle in x-z trackID trackID of particle
Yp Global angle in y-z weight weight of track
Zp 1-sqrt(Xp2+Yp2) parentIDtrackID of parent particle
x Relative x position x0 x at last scatter
y Relative y position y0 y at last scatter
z Relative z position11 z0 z at last scatter
xp Relative angle in x-z xp0 xp at last scatter
yp Relative angle in y-z yp0 yp at last scatter
zp 1-sqrt(xp2+yp2) zp0 xp at last scatter
nEvent Event number partID PDG particle identifier

3.4.4 dump

Used in conjuction with option,fifo=<filename> to output the bunch distribution at
a given point. If the specified output file is a fifo, the distribution can be modified by
an external program before being piped back in to continue tracking. This is useful for
including multi-particle effects such as wakefields at given points in the lattice.

dump,range=dumpMarker1

option,fifo="/tmp/temp.dat"

Output is in the standard Guineapig format, with a header line stating the number of

particles to be output. The file to be read back should be in the same format as this.

11 See Appendix D [Known Issues], page 31

Chapter 4: Visualization 18

3.4.5 use

use command selects the beam line for study

use, period=l1,range=q1/q2

4 Visualization

When BDSIM is invoked in interactive mode, the run is controlled by the Geant4 shell. A
visualization macro should be then provided. A simple visualization macro is include with
the distribution, and is outlined below.

Invoke the OGLSX driver

Create a scene handler and a viewer for the OGLSX driver

/vis/open OGLIX

Create an empty scene

/vis/scene/create

Add detector geometry to the current scene

/vis/scene/add/volume

Attach the current scene handler

to the current scene (omittable)

/vis/sceneHandler/attach

Add trajectories to the current scene

Note: This command is not necessary in exampleN03,

since the C++ method DrawTrajectory() is

described in the event action.

/vis/viewer/set/viewpointThetaPhi 90 90

/vis/drawVolume

#/vis/scene/add/trajectories

/tracking/storeTrajectory 0

#/vis/viewer/zoom

/tracking/storeTrajectory 1

#

for BDS:

#/vis/viewer/zoom 300

#/vis/viewer/set/viewpointThetaPhi 3 45

By default the macro is read from the file named vis.mac located in the current directory.
The name of the file with the macro can also be passed via the vis_mac switch.

bdsim --file=line.gmad --vis_mac=my_macro.mac

Chapter 5: Physics 19

In interactive mode all the Geant4 interactive comamnds are available. For instance, to
fire 100 particles type

/run/beamOn 100

and to end the session type

exit

To display help menu

/help;

For more details see [Geant], page 32.

5 Physics

BDSIM can exploit all physics processes that come with Geant4. In addition fast tracking
inside multipole magnets is provided. More detailed description of the physics is given
below.

5.1 physicsList option

Depending on for what sort of problem BDSIM is used, different sorts of physics processes
should be turned on. This processes are groupes into so called “physics lists”. The physics
list is specified by the physicsList option in the input file, e.g.

option, physicsList="em_standard";

Several predefined physics lists are available

standard transportation of primary particles only
em_standard transportation of primary particles, ionization,

bremsstrahlung, Cerenkov, multiple scattering

em_low the same but using low energy electromagnetic models
em_muon the same but using biased muon cross-sections
lw list for laser wire simulation - standard electromagnetic

physics and "laser wire" physics which is Compton Scattering
with total cross-section renormalized to 1.

hadronic_standard standard electromagnetic, fission, neutron capture, neutron
and proton elastic and inelastic scattering

By default the standard physics List is used

5.2 Transportation

The transportation follows the scheme: the step length is selected which is defined either
by the distance of the particle to the boundary of the “logical volume” it is currently in
(which could be, e.g. field boundary, material boundary or boundary between two adjacent
elements) or by the mean free path of the activated processes. Then the particle is pushed to
the new position and secondaries are generated if necessary. Each volume has an associated

Chapter 7: Implementation Notes 20

transportation algorithm. For an on-energy particle travelling close to the optical axis of a
quadrupole, dipole or a drift, standard matrix transportation algorithms are used [Course],
page 32. For multipoles of higher orders and for off-axis/energy particles Runge-Kutta
methods are used.

5.3 Tracking accuracy

The following options influence the tracking accuracy

chordStepMinimum minimum chord length for the step
deltaIntersection determines the precision of locating the point of intersection

of the particle trajectory with the boundary and hence the
error in the path length in each volume. This may influence
the results especially in the case when EM fields are present.

deltaChord

lengthSafety all volumes will have an additional overlap of this length
thresholdCutCharged energy below which charged particles are not tracked
thresholdCutPhotons energy below which photons are not tracked

6 Output Analysis

During the execution the following things are recorded:

• energy deposition along the beamline

• sampler hits

If the output format is ASCII i.e. if BDSIM was invoked with the --output=ascii option,
then the output file “output.txt” containing the hits will be written which has rows like

#hits PDGtype p[GeV/c] x[micron] y[micron] z[m] x’[microrad] y’[microrad]

11 250 -4.72907 -5.86656 5.00001e-06 0 0

11 250 -8.17576 -4.99729 796.001 0.320334 -0.126792

If ROOT output is used then the root files output_0.root, output_1.root etc. will
be created with each file containing the number of events given by nperfile option. The
file contains the energy loss histogram and a tree for every sampler in the line with self-
explanatory branch names.

7 Implementation Notes

7.1 Architecture

In this section the architecture of BDSIM is briefly described for someone wishing to use it
as a class library.

- BDSMultipole

- gmad

- Physics list - adding own physics processes

Appendix A: Geometry description formats 21

7.2 Features to be added in next releases

Current development is focused on the beam-gas scattering and neutron transport.

Appendix A Geometry description formats

The element with user-defined physical geometry is defined by

<element_name> : element, geometry=format:filename, attributes

for example,

colli : element, geometry="gmad:colli.geo"

A.1 gmad format

gmad is a simple format used as G4geometry wrapper. It can be used for specifying more
or less simple geometries like collimators. Available shapes are:

Box {

x0=x_origin,

y0=y_origin,

z0=z_origin,

x=xsize,

y=ysize,

z=zsize,

phi=Euler angle for rotation,

theta=Euler angle for rotation,

psi=Euler angle for rotation,

material=MaterialName

}

Tubs {

x0=x_origin,

y0=y_origin,

z0=z_origin,

rmin=inner radius,

rmax=outer radius,

z=zsize,

phi=Euler angle for rotation,

theta=Euler angle for rotation,

psi=Euler angle for rotation,

material=MaterialName

}

Cons {

x0=x_origin,

y0=y_origin,

z0=z_origin,

rmin1=inner radius at start,

rmax1=outer radius at start,

rmin2=inner radius at end,

rmax2=outer radius at end,

z=zsize,

material=MaterialName,

phi=Euler angle for rotation,

theta=Euler angle for rotation,

psi=Euler angle for rotation,

phi0=angle for start of sector,

dphi=angle swept by sector

}

Trd {

x0=x_origin,

y0=y_origin,

z0=z_origin,

x1=half length at wider side,

x2=half length at narrower side,

y1=half length at wider side,

y2=half length at narrower side,

z=zsize,

phi=Euler angle for rotation,

theta=Euler angle for rotation,

psi=Euler angle for rotation,

material=MaterialName

}

Appendix A: Geometry description formats 22

A file can contain several objects which will be placed sequentially into the volume, A
user has to make sure that there is no overlap between them.

A.2 mokka

As well as using the gmad format to describe user-defined physical geometry it is also
possible to use a Mokka style format. This format is currently in the form of a dumped
MySQL database format - although future versions of BDSIM will also support online
querying of MySQL databases. Note that throughout any of the Mokka files, a # may be
used to represent a commented line. There are three key stages, which are detailed in the
following sections, that are required to setting up the Mokka geometry:

• Describing the geometry

• Creating a geometry list

• Defining a Mokka Element to load geometry descriptions from a list

A.2.1 Describing the geometry

An object must be described by creating a MySQL file containing commands that would
typically be used for uploading/creating a database and a corresponding new table into a
MySQL database. BDSIM supports only a few such commands - specifically the CREATE

TABLE and INSERT INTO commands. When writing a table to describe a solid there are
some parameters that are common to all solid types (such as NAME and MATERIAL) and some
that are more specific (such as those relating to radii for cone objects). A full list of the
standard and specific table parameters, as well as some basic examples, are given below
with each solid type. All files containing geometry descriptions must have the following
database creation commands at the top of the file:

DROP DATABASE IF EXISTS DATABASE_NAME;

CREATE DATABASE DATABASE_NAME;

USE DATABASE_NAME;

A table must be created to allow for the insertion of the geometry descriptions. A table
is created using the following, MySQL compliant, commands:

CREATE TABLE TABLE-NAME_GEOMETRY-TYPE (

TABLE-PARAMETER VARIABLE-TYPE,

TABLE-PARAMETER VARIABLE-TYPE,

TABLE-PARAMETER VARIABLE-TYPE

);

Once a table has been created values must be entered into it in order to define the solids
and position them. The insertion command must appear after the table creation and must
the MySQL compliant table insertion command:

INSERT INTO TABLE-NAME_GEOMETRY-TYPE VALUES(value1, value2, "char-value",

...);

Appendix A: Geometry description formats 23

The values must be inserted in the same order as their corresponding parameter types
are described in the table creation. Note that ALL length types must be specified in mm
and that ALL angles must be in radians.

An example of two simple boxes with no visual attributes set is shown below. The first
box is a simple vacuum cube whilst the second is an iron box with length x = 10mm,
length y = 150mm, length z = 50mm, positioned at x=1m, y=0, z=0.5m and with zero
rotation.

CREATE TABLE mytable_BOX (

NAME VARCHAR(32),

MATERIAL VARCHAR(32),

LENGTHX DOUBLE(10,3),

LENGTHY DOUBLE(10,3),

LENGTHZ DOUBLE(10,3),

POSX DOUBLE(10,3),

POSY DOUBLE(10,3),

POSZ DOUBLE(10,3),

ROTPSI DOUBLE(10,3),

ROTTHETA DOUBLE(10,3),

ROTPHI DOUBLE(10,3)

);

INSERT INTO mytable_BOX VALUES("a_box","vacuum", 50.0, 50.0, 50.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0);

INSERT INTO mytable_BOX VALUES("another_box","iron", 10.0, 150.0, 50.0,

1000.0, 0.0, 500.0, 0.0, 0.0, 0.0);

Further examples of the Mokka geometry implementation can be found in the exam-
ples/Mokka/General directory. See the common table parameters and solid type sections
below for more information on the table parameters available for use.

A.2.1.1 Common Table Parameters

The following is a list of table parameters that are common to all solid types either as an
optional or mandatory parameter:

Appendix A: Geometry description formats 24

• NAME

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the Geant4 LogicalVolume associated
with the solid will be labelled with this name. The default is set to be the table’s name
plus an automatically assigned volume number.

• MATERIAL

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the volume will be created with this
material type - note that the material must be given as a character string inside double
quotation marks(“). The default material is set as Vacuum.

• PARENTNAME

Variable type: VARCHAR(32)

This is an optional parameter. If supplied, then the volume will be placed as a daughter
volume to the object with ID equal to PARENTNAME. The default parent is set to be
the Component Volume. Note that if PARENTID is set to the Component Volume then
POSZ will be defined with respect to the start of the object. Else POSZ will be defined
with respect to the center of the parent object.

• INHERITSTYLE

Variable type: VARCHAR(32)

This is an optional parameter to be used with PARENTNAME. If set to “SUBTRACT“
then the instead of placing the volume within the parent volume as an inherited object,
it will be subtracted from the parent volume in a boolean solid operation. The default
for this value is set to ““ - which sets to the usual mother/daughter volume inheritance.

• ALIGNIN

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of components will be
rotated and translated such that the incoming beamline will pass through the z-axis of
this object. The default is set to 0.

• ALIGNOUT

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the placement of the next beamline
component will be rotated and translated such that the outgoing beamline will pass
through the z-axis of this object. The default is set to 0.

• SETSENSITIVE

Variable type: INTEGER(11)

This is an optional parameter. If set to 1 then the object will be set up to register energy
depositions made within it and to also record the z-position at which this deposition
occurs. This information will be saved in the ELoss Histogram if using ROOT output.
The default is set to 0.

• MAGTYPE

Variable type: VARCHAR(32)

Appendix A: Geometry description formats 25

This is an optional parameter. If supplied, then the object will be set up to produce
the appropriate magnetic field using the supplied K1 or K2 table parameter values .
Three magnet types are available - “QUAD”, “SEXT” and “OCT”. The default is set
to no magnet type. Note that if MAGTYPE is set to a value whilst K1/K2/K3 are not set,
then no magnetic field will be implemented.

• K1

Variable type: DOUBLE(10,3)

This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “QUAD” then a quadrupole field with this K1 value will be set up within
the object. Default is set to zero.

• K2

Variable type: DOUBLE(10,3)

This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “SEXT” then a sextupole field with this K2 value will be set up within
the object. Default is set to zero.

• K3

Variable type: DOUBLE(10,3)

This is an optional parameter. If set to a value other than zero, in conjuction with
MAGTYPE set to “OCT” then a sextupole field with this K3 value will be set up within
the object. Default is set to zero.

• POSX, POSY, POSZ

Variable type: DOUBLE(10,3)

These are required parameters. They are form the position in mm used to place the
object in the component volume. POSX and POSY are defined with respect to the center
of the component volume and with respect to the component volume’s rotation. POSZ

is defined with respect to the start of the component volume. Note that if the object
is being placed inside another volume using PARENTNAME then the position will refers
to the center of the parent object.

• ROTPSI, ROTTHETA, ROTPHI

Variable type: DOUBLE(10,3)

These are optional parameters. They are the Euler angles in radians used to rotate the
obejct before it is placed. The default is set to zero for each angle.

• RED, BLUE, GREEN

Variable type: DOUBLE(10,3)

These are optional parameters. They are the RGB colour components assigned to the
object and should be a value between 0 and 1. The default is set to zero for each colour.

• VISATT

Variable type: VARCHAR(32)

This is an optional parameter. This is the visual state setting for the object. Setting
this to “W” results in a wireframe displayment of the object. “S” produces a shaded
solid and “I” leaves the object invisible. The default is set to be solid.

Appendix A: Geometry description formats 26

• FIELDX, FIELDY, FIELDZ

Variable type: DOUBLE(10,3)

These are optional parameters. They can be used to apply a uniform field to any
volume, with default units of Tesla. Note that if there is a solenoid field present
throughout the enitre element then this uniform field will act in addition to the solenoid
field.

A.2.1.2 ’Box’ Solid Types

Append _BOX to the table name in order to make use of the G4Box solid type. The following
table parameters are specific to the box solid:

• LENGTHX, LENGTHY, LENGTHZ

Variable type: DOUBLE(10,3)

These are required parameters. There values will be used to specify the box’s dimen-
sions.

A.2.1.3 ’Trapezoid’ Solid Types

Append _TRAP to the table name in order to make use of the G4Trd solid type - which is
deined as a trapezoid with the X and Y dimensions varying along z functions. The following
table parameters are specific to the trapezoid solid:

• LENGTHXPLUS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the x-extent of the
box’s dimensions at the surface positioned at +dz.

• LENGTHXPMINUS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the x-extent of the
box’s dimensions at the surface positioned at -dz.

• LENGTHYPLUS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the y-extent of the
box’s dimensions at the surface positioned at +dz.

• LENGTHYPMINUS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the y-extent of the
box’s dimensions at the surface positioned at -dz.

• LENGTHZ

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
box’s dimensions.

Appendix A: Geometry description formats 27

A.2.1.4 ’Cone’ Solid Types

Append _CONE to the table name in order to make use of the G4Cons solid type. The
following table parameters are specific to the cone solid:

• LENGTH

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the z-extent of the
cone’s dimensions.

• RINNERSTART

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the start of the cone. The default value is zero.

• RINNEREND

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the end of the cone. The default value is zero.

• ROUTERSTART

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
start of the cone.

• ROUTEREND

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the outer radius of the
end of the cone.

• STARTPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the cone. The default value is zero.

• DELTAPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the cone. The default value is 2*PI.

A.2.1.5 ’Torus’ Solid Types

Append _TORUS to the table name in order to make use of the G4Torus solid type. The
following table parameters are specific to the torus solid:

• RINNER

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the inner
radius of the torus tube. The default value is zero.

• ROUTER

Variable type: DOUBLE(10,3)

Appendix A: Geometry description formats 28

This is a required parameter. This value will be used to specify the outer radius of the
torus tube.

• RSWEPT

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the swept radius of the
torus. It is defined as being the distance from the center of the torus ring to the center
of the torus tube. For this reason this value should not be set to less than ROUTER.

• STARTPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the torus. The default value is zero.

• DELTAPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
swept angle of the torus. The default value is 2*PI.

A.2.1.6 ’Polycone’ Solid Types

Append _POLYCONE to the table name in order to make use of the G4Polycone solid type.
The following table parameters are specific to the polycone solid:

• NZPLANES

Variable type: INTEGER(11)

This is a required parameter. This value will be used to specify the number of z-planes
to be used in the polycone. This value must be set to greater than 1.

• PLANEPOS1, PLANEPOS2, ..., PLANEPOSN

Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the z-position of the
corresponding z-plane of the polycone. There should be as many PLANEPOS parameters
set as the number of z-planes. For example, 3 z-planes will require that PLANEPOS1,
PLANEPOS2, and PLANEPOS3 are all set up.

• RINNER1, RINNER2, ..., RINNERN

Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the inner radius of
the corresponding z-plane of the polycone. There should be as many RINNER parameters
set as the number of z-planes. For example, 3 z-planes will require that RINNER1,
RINNER2, and RINNER3 are all set up.

• ROUTER1, ROUTER2, ..., ROUTERN

Variable type: DOUBLE(10,3)

These are required parameters. These values will be used to specify the outer radius of
the corresponding z-plane of the polycone. There should be as many ROUTER parameters
set as the number of z-planes. For example, 3 z-planes will require that ROUTER1,
ROUTER2, and ROUTER3 are all set up.

Appendix A: Geometry description formats 29

• STARTPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the starting
angle of the polycone. The default value is zero.

• DELTAPHI

Variable type: DOUBLE(10,3)

This is an optional parameter. If set then this value will be used to specify the delta
angle of the polycone. The default value is 2*PI.

A.2.1.7 ’Elliptical Cone’ Solid Types

Append _ELLIPTICALCONE to the table name in order to make use of the G4Ellipticalcone
solid type. The following table parameters are specific to the elliptical cone solid:

• XSEMIAXIS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the Semiaxis in X.

• YSEMIAXIS

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the Semiaxis in Y.

• LENGTHZ

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the height of the
elliptical cone.

• ZCUT

Variable type: DOUBLE(10,3)

This is a required parameter. This value will be used to specify the upper cut plane
level.

Note that the above parameters are used to define an elliptical cone with the following
parametric equations (in the usual Geant4 way):

x = XSEMIAXIS * (LENGTHZ - u) / u * Cos(v)

Y = YSEMIAXIS * (LENGTHZ - u) / u * Sin(v)

z = u

where v is between 0 and 2*PI and u between 0 and h respectively.

A.2.2 Creating a geometry list

A geometry list is a simple file consisting of a list of filenames that contain geometry
descriptions. This is the file that should be passed to the GMAD file when defining the
mokka element. An example of a geometry list containing ’boxes.sql’ and ’cones.sql’ would
be:

’#’ symbols can be used for commenting out an entire line

/directory/boxes.sql

/directory/cones.sql

Appendix C: Bunch description formats 30

A.2.3 Defining a Mokka element in the gmad file

The Mokka element can be defined by the following command:

<element_name> : element, geometry=format:filename, attributes

where format must be set to mokka and filename must point to a file that contains a
list of files that have the geometry descriptions.

for example,

collimator : element, geometry=mokka:coll_geomlist.sql

A.3 gdml

GDML is a XML schema for detector description. GDML will be supported as an external
format starting from next release.

Appendix B Field description formats

The element with user-defined magnetic field map is defined by the command

<element_name> : element, bmap=format:filename, attributes

for example,

colli : element, bmap=XY:colli.bmap

Supported formats are “mokka” and “XY”. In the latter case a text files must be speci-
fied, where each rows must have the following format: x y Bx By Bz

Appendix C Bunch description formats

For compatibility with other simulation codes following bunch formats can be read. For
example, to use the file distr.dat as input the beam definition should look like

beam, particle="e-",distrType="guineapig_bunch",distrFile="distr.dat"

The formats currently supported are listed below:12

• guineapig_bunch : E[GeV] x[mum] y[mum] z[mum] x’[murad] y’[murad]

• guineapig_slac : E[GeV] x’[rad] y’[rad] z[mum] x[nm] y[nm]

• guineapig_pairs : E[GeV] x’[rad] y’[rad] z’[rad] x[nm] y[nm] z[nm] (here a particle
with E>0 is assumed to be an electron and with E<0 a positron.)

• cain :

A custom distribution file format can be specified in the form

distrType="field1[unit1]:field1[unit1]:...

The allowed values for fields/units are:

For instance:

12 see src/BDSBunch.cc for more details

Chapter 8: References 31

beam, particle="e-",

energy=ener * GeV,

distrType="pt[1]:E[GeV]:xp[rad]:yp[rad]:z[mum]:x[nm]:y[nm]",

distrFile="bunches/beam.dat";

Appendix D Known Issues

A bug is present where a sampler attached to a bending magnet (RBend/SBend) will cause
the magnetic field to fail to be set. The reference frame rotates correctly but the particle
trajectory does not follow. To work around this issue, samplers should be attached to a
marker rather than directly to the magnet. For example:

dip: sbend,l=1*m, angle=0.1;

temp: line=(dip);

use, period=temp;

sample, range=dip;

should be replaced by:

dip: sbend,l=1*m, angle=0.1;

dipMark: marker;

temp: line=(dipMark,dip);

use, period=temp;

sample, range=dipMark;

Samplers attached to multiple instances of the same element incorrectly register hits
only from the first instance in all such samplers. For example:

drift1: drift, l=1*m;

mark1: marker;

line1: line=(mark1,drift1,mark1,drift1);

sample, range=mark1[1];

sample, range=mark1[2];

will incorrectly record hits at mark1[1] in the sampler attached to mark1[2]. To avoid
this, samplers should be attached to uniquely named elements.

There is a known issue with ROOT output using ROOT versions higher than 5.10. To
use ROOT output, BDSIM should be compiled with ROOT version 5.10 or lower.

There is a known issue with the z parameter output to samplers. As particle data is
output at the z location of the sampler, when the global position is transformed from global
to relative coordinates z is identically zero. For a description of a particle’s longitudinal
position in the bunch, please use the parameter s instead.

Chapter 8: References 32

8 References

1. [Blair] G. Blair, Simulation of the CLIC Beam Delivery System Using BDSIM, CLIC
Note 509

2. [Root] Root User’s Guide, http://root.cern.ch/root/doc/RootDoc.html

3. [Geant] Geant4 User’s Guide, http://geant4.cern.ch/support/userdocuments.shtml

4. [MAD] MAD-X User’s Guide, http://mad.home.cern.ch/mad/uguide.html

5. [Course] for example ’Basic course on Accelerator optics’ by Schmuesser, Rossbach,
CERN Accelerator school

